-AD-A138 BeR

LANGUAGECU) AIR FORCE

, OH SCHOOL OF ENGINEERING G H GUNSCH ET AL
UNCLASSIFIED AFIT/GE/EE/83D-24

i

e
T
T
I A A
1 O
I A
1 A A
I A A
1 A A
1

A PROPOSED MILITARY FLANNING TASK SIMULATOR USING ROSS
INST OF TECH WRIGHT-PATTERSON AFB

DEC 83
F/G 571

1/2.

NL

1.6

g N o
3l =l
== =

-
g s
58
= &
P — 17, =1
ddaq . .
<t z 2
Yl OB o -y uu . .ﬁ”v Uw
K EEFFEETTE - S5s
. == 22
w oo
o & g
. —_ e -
—— — nL 8 g
o 2
T e— &=
— e — =
— — Rl
R
¥ -
LY M
f,..n.‘.-.x.v.r....-,.\- I A I ATy, e 3
Sy e e
AL <3 s\v\MZ

""-r';""‘: -
X%

l“‘ o

n‘) &
N de
Y ()
o v
i
Q
e =
A Proposed Military Planninat Task
Simulator Using the ROSS Language
Thesis
AP LT GRER43D-24
Gregg #H. Gunsca
Capt USAT
-
-
-
2
44
-l
e
- DEPARTMENT OF THE AIR FORCE
—— :
— AIR UNIVERSITY
-

Wright-Patterson Air Force Base, Ohio

PO IS R T
5 . "

DIS.T."Y?'”?‘“ e :"":“E!:_" ’
Ao et 0 84 to o~
Lustnt et I 5 .

DTIC

ELECTE
FEB 211384

D

AIR FORCE INSTITUTE OF TECHNOLOGY

N

..-' ",

.

':‘J\
0y AFIT/GE/EE/83D-24
o
P o .
AN o Pm——————— [P —
o > Accession For

P o o e— W—

' NTIS GRAXI >
O DTIC TAB 0]
RN Unannounced]

'T;T Justification __ |

. By .

| Distribution/ k4
o Availability Codes

e Avail and/or

N Dist Special

., ﬁ \

T

.-\‘

o

e

.

PO
LN YA .
)

S ‘g .

i A Proposed Military Planning Task
- Simulator Using the ROSS Language
g Thesis

- AFIT/GE/EE/83D-24

l. -

ﬁ& Gregg H. Gunsch Bob V. Hebert
'\? Capt USAF lst Lt USAF
¢

53

7 DTIC

& F\ELECTE
FEB 2 11984
3 D

:".

NIV
DIV IY -

;Qj Approved for public release; distribution unlimited.
'1—

AN

Y
o

- ~ ~ N

R N -'_ - ". e s'. '._ t“ ‘.-‘. \. ~.‘. . "‘.‘..\‘...‘-.. o A:‘..".,

N

R AFIT/GE/EE/83D~24

S
2y
~la A Proposed Military Planning Task

"

4 Simulator Using the ROSS Language

N

= Thesis

o3

3

) Presented to the Faculty of the School of Engineering
N of the Air Force Institute of Technology

o

j: Air University

@ in Partial Fulfillment of the

;: Requirements for the Degree of

o

o Master of Science

iy

v,

A

%)

- by

-._\

':Z: Gregg H. Gunsch, B.S. Bob V. Hebert, B.S.
R Capt USAF 1st Lt USAF
s

- Graduate Electrical Engineering

e

%35: December 1983

#

%

4 .

c.:: e Approved for public release; distribution unlimited
+

-

,.
K '.;\‘:‘: ‘ ,‘: ', l‘n.:,l‘:

YA

it
LY

e
P A
RS

kY

/ 0y P
f‘./‘, P AN

' ';‘,. .

[NTATAS LI

- - y ¥ v
. 2 ";_‘5."-.“ ._".."a."

l. ...‘. ..'.'.’

PREFACE

This thesis is intended to lay the groundwork for the
construction of simulators of the military planning
process. The techniques used are those of artificial
intelligence. The conceptual framework of the simulator
is developed, and then an example system is implemented
using the ROSS programming language in order to

demonstrate certain aspects of the design.

The example system (SAMPLE) performs several of the
decision tasks required of an Army Hawk (a low to medium
altitude surface-to-air missile system) battalion
commander when choosing emplacement sites for his firing
batteries. The decision processes implemented in the
example are only an approximation of those used by the
commander, and as such are somewhat oversimplified. The
intent of the example is to demonstrate the methodology of
transferring the real-world expertise of the commander
into a computer simulation, not to provide an accurate
simulation of the emplacement task. We are not Hawk

commanders: we do not have the expertise.

We would like to take this opportunity to thank those
who helped us the most: our wives -~ Cherry and Laura.

Without their 1loving support and tolerance, this thesis

ii

R T T T N N T N N T S T T T T R R S T R T R T AT A T T R N M N A o T T W . T W W N, v " ("o~ R e, - 5, e, 1

2% would not have been possible. We would also like to thank

- our children; who have gone so long without their fathers.

.

LA
2

Yy

{

We hope they remember who we are.

'hﬁ Special thanks to Captain Rob Milne, our advisor, for
the encouragement to break new ground, and to Doctor
Matthew Kabrisky for his wise guidance and gentle
- criticism. Finally, a warm "thank-you" goes to our

librarians; especially Linda Stoddart for always finding
R the references we needed. We don't know what we would

have done without her.

D Gregg H. Gunsch Bob V. Hebert

e .

&L, b
K s
Xe iii

L]

Lo,

i
.‘ .
-
-..n o - - - » .- .. - - " - - ‘_' Ll .! c . .! . Y - A ..- - . - . -\ ™ \‘ _' T A ~ Q" ~ .‘ t.~ e -
NN NN WSO ‘.'s.'-'- \- DA Ty SRS AR Ny "\‘:‘;‘;EL\‘L'-‘}.‘_-.').'

T e Table of Contents

- Page
3
::j Preface ® 0 0000000 OE P OO OO OO0 LSOO ESESSIOOEE TSNS ii
LN
::j' List Of Figures ® 0 0 000 ¢ O 0O O OO SO OO OSSO OSSO E S OO PO vi

List Of Tables ® O O O 0 00O 000 OO OO PN OO OB PO OO OO OSSO S vii

' Abstract LI B BN BB B B BN B NN NN BE B BN BN RN N R B BE K B NN B RE K NN BE R BN BE BK N BN B NN B N J viii
‘)
::‘ I. Introduction ® 0 0 60000 0 05000 0GOS OSSOSO O OO OGS I - l
- Problem Definition ®s 0000000000000 00s0 - 1
z Scope ® ® & 0 ¢ 00 0 0000 OB P OO OO OO C O OO NI o -2
\ Assumptions ® 9 ¢ 0 0% 0 00 &0 00 S 0000 e e e e - 7
Q.
.
:‘ IIO Background ® ® 0 000008 ® OO0 O SO E DO O SO O OSSO e O PINGSES II - 1
. Planning ® 6 OO 00 000 S OO P OO OL S OO OSSO eSO OCEDS -1
e Summary of Current Knowleddge cccceececess -6
: our Philosophy ® &5 000009 0006900000000 -13
i
' ‘:b I1I. Planning Task Simulator .ecceeccecccecceees III =1
;-:) Introduction ® ® 05 O 000 9O O OSSO Oe SO OO0 e - 1
“ ROSS - An Object-Oriented
:-: Simulation Language ® ® 00 00600080 00000 O - 2
- Extending the ROSS Environment -5

v 1v. Planning Task Simulator Design Procedure.. v -1

* Introduction ® O O 000 005" O S O OO S S OO OO O SO0 -1

3 General Design ® 0 & O 0 90O O OO OO N PE PO E S POE -4
Detailed Design ®® G0 O OO OO OO SO OO E SO e e e —7

4 Vc SAMPLE General DeSign es e eOesIBOIOOEROEOBILOEOTOEOSTPOEDS v - 1

"'

'.‘.‘ Introduction e ® 0O 0O & 0@ 0 OO O OO S OO O ¢ OO P OO -1

): Task Description ® © 6 0 0 & 0 59 OB OO0 QS Oe 0 0 e -2

.I EDVironment Description 006000000000 - 7

= Knowledge Domain Description ecceeceess -11

~ User Behavior Specification .eccececcees ~-16

N

i

1

~ iv

b

h\ AT PR Ty N '(\.-f~'q'~f\)‘("--v .-f"_,- .-__.\ __.-__.__.;_.-‘-\....,-_ e AR G _. RO L R

oy ~ _'.‘:_. _'T

AY
N Table of Contents
¥
\; ..-3\ Page
' VI. SAMPLE Detailed Design ® ® & 0 00 ¢ 00 ® 00O P PO e o0 VI - 1
’ Simulator Design Refinement Y EEEEEEEREXS - 1
, Context-Level Micro-Expert Design -11
oy Micro-Expert DesSign cscececcccccacccces =12
\d VII. Summary ® 9 8 00 000" GO OO OO OO OGP OO0 O e OO e S VII - 1
-T:: IntrOduction ® © 5 50 O 0 0P OO0 SO OO VOSSO0 O o s - l
‘.:" Task Algorithm Results..o-ooooo.oo.ocoo - 1
K .. Conclusions and Recommendations - 4
*' Bibliography ® O 9 00 ¢ O O 0 00 " OO DO GO OO O SO E OO O OO E O O S e 0 BIB - 1
.
ﬁ Appendix A: Planning TactiCS .cecceccocccccscscsce A -1
b Appendix B: Site Selection Objectives ..iececess B -1
": Appendix C: SAMPLE User's Guide LIC BRI B B0 BB I B N A B) C - l
N Appendix D: Planning Task Simulator
\‘ DeSigner‘s Guide ® © 0 6 6 5 0 8 ¢ O 5000 o0 o0 D - 1
‘-

(ib Appendix E: Using Terrain in a Planning
i'J Task Simulator ® ® 9 ® & 0 0O OO " S SO e 0o o0 0 E had 1
>
';:
N
Y
~
N
“~ L
~. .
>
N v

Ape A Jar i it IO Wl - NN] I AL A A A A A S ._"{r_\-—_‘- AT AL NEY RN SN SN SN R '.‘E".t?;'_‘:g—-.-.—-}‘T
S List of Figures
S Figure Page
Aty IV-1l: Simulator Structure ccceeeccccececcccscocs Iv - 2
)
e V-1l: Typical Deployment Scenario .eceeceececcccs vV - 4
X
R V-2: Task Inputs and Outputs for
_ the Site Selection Task P00 0000000000 roe V-5
:'.;jf V-3: Organizational Structure of a Triad
. Battalion in Direct Support of a Division vV -8
V-4: SAMPLE Communications Model ..ccceececcsss vV -10
*& VI-1: SAMPLE Functional ModuleSceeveeesee VI = 2
‘*
'::J VI-Z: SAMPLE TOp-level Hierarchy s e e e s0 000000 vs VI - 3
[}
o VIi-3: Leading and Supporting Actor Hierarchies. VI - 4
b
f’ VI-4: Logical Actor Structure ® e ePs O G OGRS BOPOS VI - 7
i VI-5: Micro-Expert Component Interaction vi -13
; @ B-1: Mutual Support and Overlapping Fire B -3
j:::: B-2: Typical Deployment SCenario e.ceeceecececscs B -5
o
::‘-. C—l: UNIX DiIeCtOry Structure ® 000000 000000 C -10
v
¥
=7
")
o
\
)
¢
Sl
4
.:;,
.::J
o
XY
) vi

5

h)

* s

AP P Pt P

YA LA

a'a’a s &

o
a

WA A A

ctata

B a A s ata s M

s s a d v P,

Table

VII-1l:
VIii-2:
VIiIi-3:
VIiIi-4:

C-1l:

.......

List of Tables

Scenario Definition

® ® 6 ® 00 0TSO SOEBISOG 00

Candidate Site ® ® 0 0 ¢ 5 O 00 O 0SS OO RO OSSO SO
site Scoring ® 0 O & 0 0F O 000800 S OO S eSS OSSOSO ee
Pair Scoring ® O 5 © 009 %09 60O PO Se O VeSS

Scenario Definition Components .eceeceeeee

.......

eI 4 Tt JdAve Ie Joviin I —p e B DAy Bt - HAD A Rau e Rt A A i 5 te) P AJACISCINCING 4 LAY BT I AL SPE R AR ST A

«'e - -

AFIT/GE/EE/83D-24

/ ABSTRACT

A

~—~Planning, particularly military planning, is viewed
as the integration of subplans, each of ‘which serves to
accomplish a subgoal of the original goal. This model
serves as the conceptual framework of the planning task

simulator. The simulator is an environment in which task

specialists, modeled by expert systems, are used to

formulate courses of action to meet *the given subgoals.

(ib Portions of the simulator have been implemented as a
demonstration of the feasibility of this approach, as well

as a guide for future developers. The language used was

ROSS, an object-oriented simulation language embedded in
Franz Lisp or MacLisp and developed by the Rand
Corporation, The implementation was done on the Air Force
Institute of Technology's Scientific Support Computer, a
vax 11/780. The dialect used was the Franz Lisp version

of ROSS.

Several system functions such as data storage and
retrieval mechanisms, a communications channel model,

design aids, and debugging aids were implemented to

'35' provide a workbench for the development of an extended

a viii

3 4 203 LR WA ad St i £ 0 e f vl L A A AR SR A AL S RN N NUNRNEM AR AR . -‘1
-‘\

A
Y
\ L
R

.

>

N simulator. One task specialist was also constructed: a
SR .

b - small-scale expert system that performs the planning
{

-~ involved in selecting emplacement sites for Hawk
f} medium-range surface-to-air missile (SAM) Dbatteries in
- direct support of an Army division 1in the defensive
posture.
Although the implemented task —pecialist is highly

- constrained and only an approximz »>n of the real-world
-

A counterpart, it serves to demonstrat. the ease with which
A L

s task specialists can be constructed. The transparency,
jé modularity, and power of ROSS, with the additional system
h .

Y

ﬁ functions, provides a robust environment 1in which to
' ‘]i simulate real-world planning algorithms.

‘--

v

)

-

KN

5

N

1S

N

N ix

\

o

.

2w -!- N A AT NP L .'.\"-\". o™, '4'\1'\—'..f%f\q‘_'(\-' AT W \.\;.\:."-.":. s -_'-‘-_"_:“ - .\._\‘_~!..\"-. .-_-.T,-.\ e

Ay

“ G
- 1] w_.

NN AN

Partg =Ny

LRI SR

AT AR

CHAPTER ONE

INTRODUCTION

l.1. PROBLEM DEFINITION

Both Eastern and Western analysts agree that success
on the modern battlefield relies on effective military
planning. Because of the increasing complexity of
expected battlefield scenarios and the range of
specialized knowledge required of all commanders,
effective planning 1is becoming increasingly difficult.
Three areas of current research are potentially capable of

aiding battlefield commanders.

First, several Air Force programs are currently
developing automated decision aids for military planning
tasks. Typically, such aids serve a data reduction
function. Second, several researchers have developed
models of the planning process. Study of these models has
led to the study of planning heuristics designed to
improve the effectiveness of human planners. Thirya,
automated systems exist that simulate the problem-solving
processes of human experts within a limited domain; such
automated systems are known as "expert systems." We

believe that the integration of these three research areas

could lead to the development of a planning task

=~ LI LD DA iR i TR B s I Rt it it RS S S A S R SR Sl A P N e R R

- simulator, in which military task specialists, modeled by
expert systems, can be used to formulate courses of action

aimed at achieving assigned military objectives.

Such a simulator would be an effective decision aid
for the Dbattlefield commander. Not only would it serve
the data-reduction function of current decision aids, but
would also embody much of the expertise of the commander's
. specialization. The simulator would provide the most
reasonable alternatives to the commander, who could then
focus his talents on only promising solutions.
2 Additionally, the explanation capabilities possible in
- expert systems could provide the commander with explicit
‘[; illustrations of the strong and weak points of the
§ alternatives, and the reasoning used in selecting one over

the others.

- The intent of this thesis 1is to demonstrate one
possible approach to the implementation of such a planning
task simulator. To this end, we have defined the
following three thesis objectives:

1. Develop a set of techniques and representation
schemes appropriate for a planning task simulator.

2. Develop a design procedure for implementing a planning
task simulator.

3. Demonstrate the procedure, techniques, and
representation schemes by designing and implementing
an example task simulator that performs the site
selection task for a low-to-medium-altitude,
radar-guided surface-to-air missile (SAM) system.

D T N I T i e T e . PRI]
R AL TR . . RS . -0,
A N e e A T T e e LT

TR T S T PR A T A TR VA T VRV Y W PR s ad

4

)5 a a

. -,‘.,‘a"': ’ l{l)

s DA
LW T

v .
’
s

LA Ll
IR

Cin)

RC AU - | S A

[P SRR

Chapter Three will define the programming techniques
and representations necessary to implement the planning
task simulatce.. Chapter Four presents the design
procedure used to construct the simulator. The
demonstration system's general design is presented in

Chapter Five, and Chapter Six gives the detailed design.

1.2. SCOPE

The design methodology incorporates the techniques of
artificial intelligence. According to Patrick Winston,
“"Artificial 1Intelligence 1is the study of ideas which
enable computers to do the things that make humans seem
intelligent" (Winston, 1979: 1). A complete system, given
a well-defined doctrinal procedure for planning a specific
military task, will be capable of automatically predicting
a course of action indistinguishable from that which a
human planner would arrive at if he used the same

procedure.

The system design concepts are illustrated by the
design and implementation of a small-scale expert system
which models some of the planning activities involved in
emplacing Hawk surface-to-air missile systems, By

"small-scale" we mean that only those elements ¢f the

planning process which are necessary to solve the problem

.......................

[__ s S b Il TR I AR LN KA it e ey B St S DA 4A SIS A M A N A LR A O
"
hd

are 1implemented; several features normally associated with
expert systems are not implemented. The expert system is
to serve as a guide: an example of modeling military
planning activities. Our primary goals in developing this
example system are to make it simple enough to clearly
illustrate our design philosophy, and yet complex enough
to demonstrate that real-world problems can be solved by
such a system. We hope that the techniques and design
tools developed in this thesis will aid future researchers
in the development of planning simulators for other

military task domains.

All automated systems require some sort of interface
between the computer program and the user. Expert
systems generally incorporate a complex input/output
package, typically including computer-generated graphics,
natural language communication with the user, or both.
Such systems also incorporate a query mechanism which
allows the user to trace the reasoning steps followed in
generating a given output. The query mechanism 1is
sometimes quite complicated, allowing interactive editing
and querying of the system knowledge base. Implementation
of such interfaces is beyond the scope of this effort.
Typical expert systems that include these interfaces
require approximately five man-years to design and
implement (Davis, 1982: 10). Instead, a simple

input/output package, based on a menu-driven input format

9

h

4

v

L‘

Ll

’-

X
)
" .

f
L, «
S

.......
D

CACRE R R he S At 4f A0 Rt e R A e A SR |
i .. and tabular output has been implemented. A simple trace
?' 3 mechanism is also included to perform the query function.
~§ A complete planning simulator would consist of a
. number of task specialists operating within an overall
:; planning model. A complete implementation of the overall
% model 1is not attempted; only those modules required to
N connect a single task specialist (the example expert
_i system) to the user are implemented. The components of
Ef the simulator that integrate the outputs of several task
-~

N specialists have not been implemented.

3

5 We will approach the use of terrain data by
o G requesting information from a map-reader module, using
3 symbolic descriptions of the information desired. For
; this effort, the map-reader will ask the user for the
~ information being sought, and a human map-reader will have
; to abstract the data and determine the reply. However,
; the region-finding algorithms and methods of determining
3 connectivity that are required to abstract a digital map
? into useful terrain representations are available and
E discussed in the Handbook of Artificial Intelligence
_g (Fiegenbaum, 1981). We are convinced of the
i implementability of the terrain~data-base to
i terrain-abstraction conversion and automation of the
Fy N map~-reader function, provided the mass~storage and related
i R computational details can be resolved.

1 -5

;

: WY A DAY N

o talel

L]
SR T B S

s

el Y B . DR R " O I R 1 D T I
T e A A A T L DRI N ORI B A 2 L Y -

As stated 1in the problem definition, this thesis
demonstrates one possible approach to the implementation
of a planning task simulator. The thesis accomplishes the
following three objectives:

1. Development of a set of techniques and repre-
sentation schemes appropriate for a planning task
simulator.

2. Development of a design procedure for implementing a
planning task simulator.

3. Demonstration of the procedure, techniques, and

representation schemes by the design and implemention
of an example task simulator.

The example system 1is constructed to operate in a
manner similar to the planning pfocedures of the human;
that 1is, the steps that the system takes 1in working
through the problem are English-like and straight-forward
(as opposed to reams of magical code such as an operations
research project). Additionally, the task algorithm we
have used is intentionally simplistic and tightly
constrained. This was done to present a clear
demonstration of our design procedure and the use of an
assortment of techniques and representations, without
focusing attention on the details of the task itself. We
hope that this approach will provide future simulator

developers with a rich example to follow in the

implementation of their systems.

7L,

B AP

'

YA S A0

I3 R

e
-

INCNENENE | - ¢

]

&

1.3.

- B Wt Gioad o wut T GERLEE ST & © A DALV AUNMCSEAURLCADAC SRS

ASSUMPTIONS

The following assumptions are incorporated into the

solution of the problem:

Within limited domains, human problem-solving activity
may be successfully modeled by a computer program.
This is Vthe fundamental assumption underlying the
current research in expert systems. The demonstrated
performance of several available expert systems tends
to support the validity of this assumption
(Feigenbaum, 1981: vol 2). The term "limited
domains" refers to the present inability of computer
scientists to develop an automated problem solver
that can operate in more than one field of expertise.
This 1inability 1limits the scope of any project based
on current expert systems. For example, a military
planning simulator can not be extended into a

economic forecaster without a major rework.

Military planning involves the coordination of and
compromise among several independent task
specialists. This assumption 1is the basis of the
Hayes-Roth planning model: that planning can be
accomplished through the coordinated efforts of

specialists, each working on a particular part of the

problem (Hayes-Roth, 1980) ., The observed

Raligadin-J- AN

ML P U 3

e o 'y 4t
-.‘.'_.l.,:",‘".: .‘ .

A/ A
B AP I IS

t

e

N

X -
AR

ll

[y

i el R C

specialization of current planning staffs justifies
the inclusion of this assumption. Adoption of this
model requires the future development of a mechanism
to implement the coordination and compromise

function.

Military planning 1is significantly constrained@ by
national policy, established doctrine, and accepted
practices. These constraints are what make military

planning activities a "limited" domain and thus

facilitate the computer simulation of the activity.

R A |

AT 0" A R v - S St AU L A SN ICE AL TR I S R I A SO 5 A A S O e K

CHAPTER TWO

BACKGROUND

2.1. PLANNING

2.1.1. Definition of Planning

Planning is defined as the formulation of an intended
course of action aimed at achieving a goal (Hayes-Roth,
1980). This definition implies that planning may be
decomposed into three components: the goal, the course of
action, and the formulation of the specific steps of the

course of action.

The goal 1is simply a desired result that the planner
is trying to achieve, For all except the simplest of
goals, the course of action will 1likely consist of a
sequence or set of steps which must be performed to reach
the goal. Each step may then in turn be viewed as the
goal of a simpler "subplan". The integration of these
subplans into a coherent effort to reach the ultimate goal

then completes the planning process.

This is not meant to imply that every goal can be
factored into a set of subgoals. However, pursuit of a

non-factorable goal of any complexity will quickly become

IT -1

LR |

i 'v"v“-

" PNy

L e S W

YIRS o
R IS U TR LN

U
L

A. I- l‘ .l., ",.

g

‘.
o

......

AR "1'.'-' \q\

an unmanagable task for a human planner if he is expected
to produce a solution that is correspondingly complex and
non-algorithmic (not step-by-step in nature). Some
planning tasks are solved through flashes of insight, but
the majority are solved by "divide and conquer"
techniques: abstraction, bugging, and psuedo-reduction.
Appendix A contains an explanation of these techniques as
applied to human planning. Even if the goal 1is not
cleanly factorable into subgoals, there are still certain
items of interest that are dominant. The dominant items,
whether drivers or constraints, should be used to shape
the solution, and the lesser items to refine the details.
There may be conflicts, but these are introduced in the
course of makiﬁg a first-cut approximation to a solution.
The techniques for resolving certain classes of these
conficts and the methods of selecting an approach to the
problem are classified as tactics of "meta-planning".
Meta-planning is discussed in Secton 2.2.1. and in

Appendix A.

Study of the human planner reveals that the good
(robust) planner has at his disposal a variety of
techniques with which to approach the task (Sacerdoti,
1979). He is opportunistic (Hayes-Roth, 1980) and chooses
the technique to fit the problem. The good planner has,
as well as develops, heuristics to guide the selection of

the techniques. A computer program, intended to be a

R T R R I I SRR

robust planner, will also require these properties. It
:ij must have the capability to recognize the subgoals and
evaluate the importance of interesting data. It will then
Q‘ decide which technique or techniques to apply and begin

the search for a solution. The program or planner must

. E also develop metrics with which to evaluate the course of
Y
Ty the search. To effectively plan and evaluate a course of
-«
action, even a rough sketch of one, the planner must have
i; a large knowledge base extending the breadth of the
.t
:? planning domain, with sufficient detailed knowledge to
satisfactorily assure itself of the feasibility of the
iﬁ implementation.
;:
S
i
a Many planning tasks require a great deal of
o specialized knowledge in order to form a solution. In the
A case of the human, such tasks are delegated to more
o,
specialized planners. The manager or executive only needs
53 to know that the solution will be found, and who can find
L
- it. He delegates the task, and is then free to work in
his proper domain, which is a broader, but shallower piece
-~
- of the "big picture". The person who received the
SR
w’,_
L delegated task presumably is an expert in the
) specialization, and we shall refer to him as a "task
._‘-\
ZEZ specialist".
N
N
I..(Q:
A
‘ As the tasks become increasingly narrow and
:32 o specialized, the techniques that can be applied also

..... R N S . . ot |
...... LT . s N et . N

--------- R R R I IR AU T L
Ao de dodes o oS a o B & e & Al ot a2

AR JAch iy v HACM I YOIt RKia ROUR R S g A

E become less general., Often, the specialist uses the same

F
a5
fags

procedure with nearly every task assigned him, since the

et 1
.
o

tasks a specialist receives are usually similar. These
s often-used, cut-and-dried procedures are the kinds
currently being implemented with expert systems. In this
light, an expert system is simply an implementation of the

X abilities of the task :.specialist, within a very limited

‘s

problem domain, and with a limited knowledge base.

The manager, on the other hand, is given tasks that

s_n_ &8 4

are not as well-defined and require broader knowledge. He

knows what resources and experts are available, and

e @ & ¢ A

integrates their results into a course of action using the
‘[; techniques previously mentioned. For the most part though,
- managers are middle managers. That is, they delegate work
to those they manage, but at the same time receive their
tasks from higher authority. From the viewpoint of his

superior, the middle manager is a specialist: specializing

N in planning a portion of the subtasks that the superior
can generate when formulating his own plans. This
hierarchical structure can extend indefinitely, with each
person being viewed by his subordinates as a more general
planner, and by his superiors as a specialist in a
narrower planning domain. (In this instance, the terms

subordinate and superior refer to the chain of delegation

of components of the problem.)

e 4 — - . Chad Tl S BRI S ") N O
T e T e T T T T I ST T R T s Pa A s TR 8 s -

2.1.2. Military Decision-Making as a Planning Function

h_ Military commanders at all 1levels are required to

produce decisions which result in the accomplishment of
military objectives. These commanders may have
subordinate wunits that provide the input data or develop
possible courses of action needed to formulate the overall
plan. The task of the commander then, is to convert the
'L input data and list of alternatives into a decision on the

best approach to meeting his assigned objectives.

. Military decision-making, as just defined, is

therefore a planning function in the general sense. Yet,

FAE R 2

‘t; several characteristics of military decision-making serve
to distinguish it from other forms of planning:
- 1. The military commander is responsible for developing

plans to meet goals often generated by higher
authority or the actions of the enemy (and not by the

N commander himself).

h 2, Military plans are often required under stringent

: timing constraints. Additionally, commanders

) frequently do not have the luxury of not making some
decision.

3. The possible courses of action that a commander may
pursue are often significantly restricted by national

N policy, established practices, and military
doctrine.
4. While a commander may task subordinate units to help
J produce a decision, the commander remains ultimately

responsible for his decision. Therefore, two types
of expertise are generally required ot all
commmanders:

. a. Expertise in an assigned specialty area (naval
destroyer captain or an army tank commander, for

example).
b. Expertise 1in general resourse management and
. AR assessment of alternatives generated by
e subordinates.

..~"n' AR _“..

«
N
.
W Wttt et

SR S 1 S R AL N W LI e

ANPLER R T A I B A . s

[A Aas e R AW S TR Y TR TR TN TN TN TR T T TR T NS Y TR VW TR N MR AR MR A 3\‘ - rv::;-w'"-:;'»v_ R Gl SRS AR \'T

Pad
'

¢ LPRR

A "-.{’:’

The military planning environment therefore consists

{
e g

AR
1

T of the integration and coordination of decision-making

activities conducted at all command 1levels. Each unit

-
D)
o
Y

(person or group of persons) is required to accomplish its
assigned mission, and «can in turn assign its subordinate
units certain portions of the task. Units also trade
information with other wunits not in the chain of command
(lateral communications). Military doctrine and
delegation of authority ensure that each unit has a
well-defined set of behaviors relating to received

tasking, generated orders, and lateral communications.

2,2, SUMMARY OF CURRENT KNOWLEDGE

2.2.1. General Planning

As previously stated, a plan is the course of action
formulated to achieve a goal. The most obvious property
of a plan is that a plan 1is the integration of a
collection of subplans, each of which serves to achieve a
subgoal. When all subgoals are accomplished and conflicts

among them resolved, the original goal will have been

achieved.

(IR
e ’

[3
3

.._‘. g -‘;.~ ~

A
it

.....

L T e e -I'_i"J_(__\r_gr.f‘.'.v‘.f.-ﬂ. LU il Sl A '\\‘.._.>-'-.“_i.v_v..v‘.V, I

Each subplan 1is 1in itself a plan, and so can be
further subdivided into smaller subplans. Eventually, the
plan will decompose into a collection or sequence of
simple and readily executable actions. Formulating this
collection 1into a workable course of action requires
ordering, combining, and compromising between the simple
actions. Compromise 1is necessary because, quite often,
actions aimed at achieving one subgoal conflict with the
achievement of another. A general planner, one that does
not have a predefined task to accomplish, must have at its
disposal a set of tactics for resolving these conflicts
(or avoiding the generation of conflicts altogether). The
paper "Problem Solving Tactics" (Sacerdoti, 1979)
discusses a handful of approaches to producing workable

plans. These tactics are discussed in Appendix A,

This general problem-solving procedure of decomposing
the problem into subparts and then integrating the
subplans is powerful, 1in that it is applicable to a wide
variety of real-world situations. However, once a subgoal
has been adequately defined, it will probably be
advantageous to use a task-specialist to generate the
subplan. A specialist has a great deal of knowledge
relating to the particular subgoal; this expertise
includes heuristics -~- time-tested methods of attacking

the particular problem. These heuristics serve to trim a

general-purpose planner into one that 1is tuned to the

¥ W

D
I
e
b

o, 4,

particular specialty, capable of producing good solutions

2
"";.'Il
()
»

with 1less search (therefore, less computation) than the

general-purpose planner.

Specialists are used extensively in the
"opportunistic planning model" developed by Barbara
Hayes-Roth, et al. This model views planning as the
cooperative efforts of many independent plan specialists.
Each specialist makes tentative decisions about the plan
from the data it has on hand. The decision is posted on a
data structure common to all the specialists: the
blackboard. Through cooperation and transfer of
knowledge, a <course of action is derived. This project

(;B focuses on problems analogous to the naval tactical
planning problem: How should the decision-maker move
ships from their current locations to particular

task-force objectives? (Hayes-Roth, 1980).

The Hayes-Roth approach uses top-down and bottom-up
planning specialists. The top-down specialist generates
the subgoals from the given goal and directs the search
for the solution. Bottom-up specialists provide the
higher-level planners with data about execution details
which constrain the direction of the search. The term
"opportunistic" refers to the fact that there is no strong
predefined organization of planning activity. The

executive <control process, which invokes and schedules the

- -
PR IR S oot et RO
P TR Tat et e et e,

CaCaryi
:Ajs ., .‘-'(

bk

)

specialists 1is also opportunistic. This approach allows

the planning system to make wuse of all available

information to guide the search for the solution.

An alternative to the opportunistic planning model is
offered by Mark Stefik 1in his paper "Planning and
Meta-Planning" (Stefik, 1981). While the fundamental
concepts of the two approaches are very similar, the
implementations are different. The method put forth by
Stefik 1involves the wuse of a meta-planner to control the
activity of the other planning stages. A meta-planner is
a planner that determines how to formulate a plan.
Stefik's planning structure consists of planners whose
control and interactions are handled by meta-planners,
with meta-meta-planners (so to speak) controlling the
meta-planners, and so on. This is part of a line of
research aimed at enhancing the power of a problem solver

by allowing it to reason about its own reasoning process.

A comprehensive look at planning and meta-planning is

found 1in the book Planning and Understanding by Robert

Wilensky. According to Wilensky, meta-planning addresses
"the problems of goal interactions, and plan debugging and
modification" (Wilensky, 1983: 23). This 1level of
planning uses knowledge about the planning process itself,

in terms of meta-goals, meta-plans, and meta-themes.

Meta-goals are the goals of the process of planning. For

l.]

S

b

'l'-
PR

O

'

RN M o I R Jean e e [l DA A B T T T [T,

e a¥ et ettt I A AP B N A i S Y

example, "resolve conflicts™ and "find a workable
solution™ are meta-goals of the planning process.
Meta-plans are those plans and techniques that can be
applied to achieve the meta-goals. Meta-themes are the
situations that group the meta-plan and meta-goal
knowledge. The four meta-themes encountered by Wilensky
are:

l. Don't waste resources.

2. Achieve as many goals as possible.

3. Maximize the value of the goals achieved.

4. Avoid impossible goals.,

Meta-planning is accomplished through the use of
specialists. Wilensky's meta-planning specialists are
called "meta-entities". Each meta~entity contributes
toward meeting a particular meta-theme, Using the
meta-themes as guidance, the complete planning structure
formulates the problem in terms of its subgoals, and then
solves the problem by solving for the subgoals and
integrating the partial solutions. Appendix A contains

more on planning and meta-entities.

2.2,2. Military Planning

In the middle ground between general-purpose planners
and special-purpose subplanners are planners that embody
portions of both. The military officer 1is one such

planner, He must have detailed knowledge relating to his

IT - 10

“' e
s
LA

o,

‘s l-.{-.“ ‘./ -.’

PN 1 &

]
e v

A

CCy
oM
«

AN

e

AN NN

o)

assigned duties. In other words, he must be an expert at
his Jjob. Additionally, he must have knowledge of how he
fits into the "big picture" and enough general planning
ability to formulate his plan to fit in better with his
superior's other subplans. Finally, he must have enough
knowledge of his subordinates' duties and abilities to
avoid assigning tasks that they cannot accomplish, and the
general planning abilities to integrate the subplans from
his subordinates. These points illustrate the fact that a
plan by one military planner can be a subplan to his
superior, and that a planner may delegate the development

of subplans to his subordinates.

Since the simulator 1is intended to be generally
applicable to military planning, we must be able to
structurally model both Western and Eastern planning
activities. The book by Druzhinn (Druzhinn, 1972) is a

Soviet view of the military decision-making process. The

purpose of Concept, Algorithm, Decision, as stated in the

first chapter, 1is to contribute to the development of the
theory and technique of decision-making. Emphasis 1is

placed on the role of automation in the control and

‘management of military operations and of the intrinsic

capabilities of computer technology when applied to
military decision-making. The author develops a general

model of decision-making which 1is consistent with our

simulator design.

PP AN

[AN A

g

.--)‘

Another viewpoint of the Soviet decision-making

process 1is put forward 1in the paper “Modeling Soviet
Defense Decisionmaking"” (Alexander, 1980). Alexander
describes the decision-making environment in terms of
"actors". High-level actors have the authority to make
decisions and produce policy. They often face problems of
conflicting goals that require political action to
resolve. The low-level actors implement the actions
required by higher-level actors, and generate information.
They often face problems that require high-level solution
and put forward proposals, initiatives, and alternatives.
They generate conflict among themselves that must be
resolved by the political decisions of highér-level

actors.,

The "behaviors" of high-level actors are dominated by
the influences of politics, personalities, values, and
national goals. Low-level actor behaviors are tightly
constrained by doctrine, bureaucratic processes, and the
decisions of the high-level actors. This is not to say
that 1low-level actors do not influence the decisions of
the high-level actors; on the contrary, they do influence
the decisions of the higher-level decision-makers through
the information, proposals, and alternatives they provide.
While this model is intended for the Soviet
decision-making process, it can be readily extended to

other decision-making environments (for example, U.S.)

-"."'.5 3 D¢ *.(- e\ e A A RO "-."'\..*.;':;'i';?; K ﬁ

MCAE A A B R L AR T S Rl Sl

Dl NN b Il M el Sl N 2

with a reordering of priorities and changes in the effects

. of the influences.

AR
'.l fl "

4"'.". “a

2,3. OUR PHILOSOPHY

N
:ﬁ We hold that the same planning tactics being taught
o humans can be implemented as behaviors of a generalized
<
ff planning system, Codifying the abilities to resolve
T-
:3 conflicts, evaluate interactions, abstract situations and
;f data, and intelligently change tactics mid-stream could
23 easily be dismissed as an impossible task: the mechanisms
> (ib used by the human planner are themselves poorly
Ei) understood. How could one expect to program a machine to
SE do it? However, progress is being made in defining the
‘ actions taken by robust human planners and
:: problem-solvers, and as more is understood, more can be
ii incorporated into the simulator. In fact, judicious use of
- the simulator can direct planning research since the
;j computer demands definition of much knowledge taken for
- granted (common sense). In picking apart commom-sense
f; assumptions, one may find that the assumptions were in
!2 fact only partially true, like any good heuristic. One of
.
.; the distinguishing features between good and poor planners
\

is the ability to recognize when the situation has

_; }3; components that conflict with the common sense

N _

:j assumptions. Poor planners don't guestion their
IT - 13

- oy v g™
EASARAE R ._-
Saiat

LA A m w wFTwWTTWNYY™e T YN NeTe T e W,
AR RO I e A e R O A AR N A A R A |

. s assumptions, and may not even know why the assumption
- exists. Therefore, a thorough understanding of all
aspects of the problem domain, including the knowledge

taken for granted, is necessary for a good planner.

We have acknowledged the fagt that building a good
planning system is very difficult. This thesis is

intended to take a step in that direction and ease some of

—.
-8

the endeavor by providing an extensible, evolutionary

- ()
R M)

system that can grow as new tasks are defined. aAs
planning tactics are refined, they can be incorporated in
the higher-level generic planning procedures in a manner
» G like Wilensky's meta-entities. As new task specialists
are defined, they can be plugged into the system as the

low-level specialized planners.

We do not make the claim that this type of planning

system 1is capable of finding solutions to all planning

4 32

tasks, Jjust those solvable by humans. As stated earlier,

this approach requires that complex goals be factored into
simpler subgoals: a "must"™ for the limited resources of
the human mind. To those who pose the question, "What
about the goal that cannot be factored into subgoals?", we
respond, "How would you achieve it?" 1In the answer lies
: the expertise. It is our belief that even that goal, upon

Y examination, has components that can be treated separately

-=- in a subgoal-like manner.

Ta e I A R o R R A A e e . W e Tt e T, " T IR I U
A G R G s i e o i R R

‘.‘-‘.,A

‘, "'t-.‘k' ‘.

ENTRONTNININS

&
’
<

."""
L

Ry CHAPTER THREE

¢

PLANNING TASK SIMULATOR

DESIGN TECHNIQUES

3.1. INTRODUCTION

This chapter is intended to define the programming

techniques, communications model, and the knowledge

representation schemes necessary to implement a military

planning task simulator. Chapter Four presents a design

procedure used t5 construct the simulator, while Chapters

Five and 8Six describe how this procedure was followed in

the design and implementation of an example simulator.

Because many of the concepts presented 1in this
chapter are more easily understood in the context of an
example, the discussion is purposefully brief; additional
information 1is presented in Chapters Five and Six, as well

as Appendix E.

.......

3.2. ROSS -- AN OBJECT-ORIENTED SIMULATION LANGUAGE

(NS

3.2.1. The Need for an Object-Oriented Language

Most, if not all, of the decisions made by a tactical
battlefield commander are "data-driven," in that the
possible alternatives the commander has to choose from are
highly constrained by the current battlefield situation,
available terrain, and reconnaissance information. There
is a correspondence between the data-driven nature of
planning tasks and the "trigger (message)/response
(behavior)" structure of object-oriented 1languages that
make them inherently well-suited for simulating such
tasks. Additionally, representing procedural knowledge
(task algorithms, e.g.) is extremely straightforward in an
object-oriented language. While production systems are
adequate for representing this procedural knowledge, an
object-oriented language can well represent both the
procedural knowledge (responses) and the declarative
knowledge (data). Therefore, an object-oriented language
is the natural choice for implementing a planning

simulator.

A T T et e Tt A e e ST T T T e e e e e '.‘_'.‘_i." P R PRI el .

R A t ., o e PR L T et e e e e ‘-:,.3
W SO AN A ISR A P AR 'u’\: WP AP RIS I I) PR R R NP P AL AT DL, O, HLGC A, Cha R

9
-

L)
%

R {0

)

o«
8

£ rrw
|

3
ol

T e T P, g gy " ¥ T8RN s e T, -

Bl i e r A Ar R etk Ry iac IO It e S AR ARSI IR S S .

'P'Lﬁ‘—' PR B DR R RRIC A IR I SR/ IRt S Dl At B et S A

3.2'2. Ross

We have chosen ROSS as the implementation programming
language: an object-oriented language developed at the
RAND Corporation for the purpose of constructing
simulations. The 1language had its conceptual origins in
SMALLTALK and DIRECTOR and is embedded in either MacLisp
or Franz Lisp (McArthur, 1982). It contains primitives
for symbolic pattern matching and provides for the
inheritance of both behaviors (responses to inputs --
procedural knowledge) and attributes {(data -- declarative
knowledge). The object-oriented structure, near-English
programming syntax, extensibility, and ease of designing

with the language are the primary reasons we chose ROSS.,

The principle programming construct in ROSS is the
"actor", which is a set of Lisp functions (in our
implementation, Franz Lisp) or ROSS commands that are
invoked when an incoming "message" matches a predefined
pattern. . Actors may send messages to themselves or to
other actors. The program thus consists of a set of
actors passing messages back and forth. Useful work is
accomplished when the proper message triggers appropriate

responses from the proper actor.

Actors are created in a hierarchy to take advantage

of the inheritance mechanisms. An actor will inherit the

T
oo
P
£ . behaviors and attributes of the actor that created it (its
S RS
- parent). The parent inherits from its parent, and so on;
therefore, an actor will 1inherit from all of its
ancestors. Multiple parents are allowed, thereby

providing the ability to construct tangled hierarchies of

any desired complexity.

The branch nodes of this hierarchy usually consist of
generic actors, The leaves are usually instance actors.
(We say "usually" because the trees can be constructed in
any fashion,) A generic actor consists of behaviors that
are common to all actors of a class; for instance, a
generic "person" actor should contain behaviors for

(ii walking, eating, talking, etc. since these behaviors are
common to all people. The generic actor also contains the
common attributes of the members of the class. These can
be thought of as default values. An instance actor
represents an individual or functionally distinct element.

It may contain behaviors and attributes that set it apart

from the other members of the class, or it may inherit all

of its characteristics,

!! We have chosen to place all behaviors in generic

actors, and only the "customized" attributes 1in the

;4 instance actors. This method localizes the storage of the
) information as high up in the hierarchy as possible. This
N el allows the 1largest number of actors to inherit the

ITI - 4


~~~~~

- - LW UW W VTR T ATETRATAT s T T M N T O
LSRGt r S St £ LMD A4 A CORIMSLNGE SEAELE R AL AE R ERCASMEREEERE RN S A A |

information. Also, with the common knowledge moved away

from the

less general actors, the focus of attention of

the simulator designer can be on the problem-

domain-specific aspects of the task.

The

initial ROSS environment contains several

predefined actors and behaviors for the creation, removal,

and modification of new actors. Additionally, behaviors

for manipulating the behaviors and attributes of actors

are predefined, as are a number of other behaviors. For a

complete

directed

description of these behaviors, the reader is

to the R0OSS manual (McaArthur, 1982).

3.3. EXTENDING THE ROSS ENVIRONMENT

While the initial ROSS environment is very powerful,

we have

developed the following actors to aid in the

design of a planning task simulator:

(S-S 3 S
e o o o o

<)
.

8.
9.
10.
11.

ACTOR FUNCTION
Someone Planner Model
Leading-Actor Planner Model
Link Communication Model
Network Communication Model
Bulletin-Board Data Storage

and Retrieval
Personal-Memory Data Storage

and Retrieval
Scratchpad Data Storage

and Retrieval
User-Interface Design Aid
Designer Design aid
Comm-Log Debugging Aid
Historian Debugging Aid

I1I - 5

: ":“"‘;‘1

DN
ot el




Pl araiir i gt rd UL YT MR OIS I N S A ot e A T A

Collectively, these actors are known as "system"

actors, to distinguish them from task-specific actors that

differ from one simulator to the next. 1In addition to the

system actors, we have found it convenient to conceptually

distinguish between two types of task-specific actors:
those actors with real-world analogues (henceforth called

"leading actors"), and those actors without analogues

{henceforth called "supporting actors"), Supporting
N actors are used to implement functions required because we
E are simulating human planning functions with a computer
N program; for example, the "controller", responsible for

the proper sequencing of the simulator, has no real-world
; counterpart, and thus would be a supporting actor.

3.3.1. Planner Model Actors

The "someone" and "leading-actor" actors contain
behaviors that implement general-purpose behaviors of
those actors representing real-world planners (leading
actors). For example, all leading actors must "know" how
g to communicate with other leading actors. This knowledge
is represented by a 1leading-actor behavior. Leading
actors also have other actors available to them as
personal resources, such as the "personal-memory",
"scratchpad", and "“comm~log" actors. The leading actors

e we have implemented contain only those behaviors necessary

I.' ‘\
o

o .~._....- T T e e ‘.. S

- . - . - - M - - - - h
A e e e e e s e e e T N e T « - e
DS APV P PP FEDE W PR oK s Y RS S




Y e Y T e W N T T R T T R T YT R T R T AT R TR TAT AN

Sk to perform the demonstration. The behaviors needed to
RO perform general-purpose planning (see Appendix A) have not

A been implemented.

3.3.2. Communication Model Actors

Message-passing in ROSS is normally unrestricted, in
that any actor may send a message to any other actor. To
better model the real-world, we have chosen to restrict
message-passing: a leading actor can communicate with
other leading actors only through the "network" and "1link"
actors. Collections of these actors correspond to the

0 communication channels available to the leading actor's
real-world counterpart, and are defined as follows:

1. Links: provide a communications channel between two
leading actors.

2, Networks: provide a communications channel among
several leading actors.

Links and networks are referred to collectively as
comm nodes, and were introduced for the following reasons:

) 1., Nodes correspond to real-world communications links,

- thus enhancing the "simulation" ability of the
system. This should make the system easier to
understand and debug.

2, Nodes restrict the message traffic within the systenm,
thus making the design more structured and reliable.

3. Nodes provide for a built-in extensibility to command,
control, and communications simulation capability,
including the capability to add the effects of
failures, redundancies, saturation, and jamming.

. ST S I P AR T PN
et v, Sy . ¥ PEPLPEUT ¢ WP WY WE VY P VDT WU YA R VA Y W)




........

3.3.3. Data Storage/Retrieval Actors

?wﬁ The "personal-memory", "scratchpad"®, and
bsii "bulletin-board" actors are the primary vehicles for
:3? storing declarative data within the simulator environment.
E;i The personal-memory actor is designed to store
g} time-changing data accessible to a single leading actor. .
5o The scratchpad actor is designed to store time-changing
fﬁgf data related to the calculations involved in planning a
i% task, and 1is especially suited for tabular data. The
;g bulletin-board actor stores time-changing data accessible
&i to several actors. (Data that do not change with time are
;;E "hard-wired" into the simulator as actor attributes.)
s

;:* i;? Additionally, the personal-memory actors are capable of a
_ff . limited amount of inferencing, thereby allowing a less
%} restricted storage or retrieval syntax. For example, if a
u? leading actor 1is told that the group consists of his
-i; superior and his peers, 1is told that his superior is
:E; commander~-l, and is also told that the comm-channel to the
i:; group is the radio, then the message "fetch the
ig: comm-channel to commander-1" would return "radio". The
ﬁ; proper result is returned even though the actor was never
ALY

zf explicitly told the comm-channel to commander-l.

~

=

PN
e Ca s e [ AN

) et N
AR AN > AL L

l.l
.
Pl
—
[
-
|
o)

- R
.
.




0?
i

. . -
() aa
Y I D

A 5 N

Ny N e
. RS AN
o

AN
»_ ¥
Yo tat

oy 8, YRy At

a 2"

s

3.3.4. Design Aids

We have developed two actors whose sole functions are
to simplify the simulator design phase. The
"user-interface" actor, when given a symbolic message
name, will print the associated input prompt on the
terminal, read the response, validate the response against
a predefined set of constraints, and set the proper system
parameter to the input value. 1If the input is invalid, a
diagnostic error messadge is printed and the user is asked
to reenter the value. The "designer" actor allows for the
dynamic creation of actor instances, as well as the

creation of communications links and networks.

3.3.5. Debugging Aids

The "comm-log" and "historian" actors record message
traffic among leading actors. Each leading actor owns a
comm-log that records all messages sent to the actor. The
historian contains the sum of all messages recorded by
comm-logs. These recording actors not only simplify the
debugging of the simulator design, but also provide the

user with a record of the message traffic during a

session.




_-.-.-.r_vﬁv?v\ir.r_r‘t". K st I~ i
NN T e

Pod w v T T WTETR TR Y e

LA a4 ah A A AN AL LA A S

3.3.6. Representing Constraints

Much of the information that drives the commander's
search for a solution is in the form of constraints:
mission constraints, environmental constraints,
constraints imposed by the enemy, etc. One characteristic
of a constraint 1is that it 1is desirable or sometimes
mandatory to meet the constraint, and undesirable or
detrimental not to meet it. Meeting constraints is a

meta-goal of the planning process.

Various methods can be used to represent constraints,

two of which are the most common. The first 1is to

(;? describe the constraint in the form of a continuous cost
| function. For example, the constraint of not getting too
close to a burning fire can be described by the distance

verses radiant energy relation: the amount of radiant

energy 1impinging on a surface is inversely proportional to

the square of the distance from the fire. To avoid being

singed, one must remain a certain distance from the fire;

1
am

that distance is determined through the use of the cost

4
’

2 a
(4
*

.
af.

function,

L3
»

7

The second method is to represent the constraint with |

iﬁ a limited number of possible cases (or classes). These
] cases sample the range of possible values the constraint

» '{J can take on, In the previous example, the cases




ii describing the amount of 1incident heat as the distance
- increases may use terms like: intolerable, dangerous,
uncomfortable, comfortable, noticable, and insignificant.
This representation has proven useful in guiding decision
heuristics (for example, "I1f dangerous, méve!“) and is the
type used in the demonstration system. We have found it to
be psychologically appealing since the human planner does

= not evaluate his alternatives at every possible value of

- the (continuous) cost function, but approximates the
N constraint to 1limit the number of computations he must
! perform. This representation is similar in many ways to

"fuzzy set" theories.

‘]i The selection of the proper thresholds (the borders
n - between <classes) 1is critical to the effectiveness of the
. constraint when used to gquide heuristics. Suitable
metrics must be devised to determine where the thresholds
lie. The situation or doctrine may provide many of these
metrics, as well as user/simulator interactions
("tinkering™ with the system). One example would be the
distance from the enemy that a comﬁander could place his
fﬁ resources and still remain reasonably sure of their

safety. If the range of ground artillary and mortars is 8

(3 .
e
L wte

kilometers, then 8 kilometers 1is a suitable threshold.

Placing his resources closer to the enemy than 8km would

put them in danger; beyond 8km, they would be safe. Near

the threshold, the commander must make a judgement and




P A SN £ A P AT S S M
. ) 7o, . . e . - -

other factors would come into play. If he was
= conservative, being near the 8km threshold would be
considered dangerous. If aggressive, then the risk would
be accepted. This illustrates the point that some
constraints dominate over others, and solutions are found

through their interactions.

3.3.7. Modeling Terrain Within a ROSS Environment

All military planners require terrain data to
formulate decisions. Currently available sources for the
real-world commander include the Defense Mapping Agency' s

{]ﬁ Digital Terrain Map system, and the US Army's 1:50,000 and

1:250,000 scale series maps.

We have developed a specification for a General
Al Military Map Representation (GMMR) that, ultimately, would
contain all terrain information that commanders could
glean from standard military maps. The GMMR should
contain information about elevation, grid 1locations,
& terrain cover and foilage, 1locations of roads, rivers,
. cities, railroads, and items of specific military interest
(see Appendix E). Each terrain-using task specialist
would have a map reader adapted to the specific job of
extracting and compiling the tecrrain information that the

task specialist will need.




RN CHAPTER FOUR

PLANNING TASK SIMULATOR
- DESIGN PROCEDURE

_ 4.1.

INTRODUCTION

The purpose of this chapter is to present a design
procedure which can be followed to construct a planning
M task simulator. Chapters Five and Six describe an example

simulator designed according *o this procedure,

Figure 1IV-1] describes the general structure of a

‘]i planning task simulator. The structure consists of three
distinct 1levels and the interfaces between the layers. The

f simulator is designed to operate interactively. The user
layer contains the functions that the user will perform

during the simulation. The inclusion of this layer in the

o) design structure allows the retention of a human "in the
loop." The simulator layer contains the system actors and
representation mechanisms defined in Chapter Three. This
layer effectively buffers the user from the operation of

the micro-expert. The task layer contains the

micro-expert(s) that actually perform the assigned tasks.




USER USER LEVEL USER
SYSTEM SIMULATOR LEVEL SYSTEM
ACTORS ACTORS

TASK TASK LEVEL COORDINATION

MICRO-EXPERT MICRO-EXPERT
TASK TASK
TASK

SINGLE MULTIPLE
EXPERT EXPERTS
Part [A] Part ([B]

Figure IV-1l., Simulator Structure

IV = 2

...... . o
PO St St . « . . B R T S L R R . -
et . . B NG NI TR L L I . NGNS AN

PP R AP P S A P RO I SR AT I P A A AL W L R W, S S




<.

R B A el The Ira e Totu e vt A 4c R D AR AEN A A

The fiqure depicts two different organizations of the
task layer. Part [A] shows a single micro-expert
interfaced directly to the simulation layer. This
structure is appropriate for relatively simple
decision-making tasks where a single individual is wholly
responsible for developing the possible courses of action.
Part [B] shows multiple micro-experts being controlled
and coordinated by a special coordinating micro-expert.
This structure is appropriate for wmore complicated
planning tasks where several task specialists provide
possible alternatives to a higher echelon. The higher
echelon planner then evaluates the alternatives and
produces the decision. In both cases the simulator layer
communicates directly with a single micro-expert, thus
simplifying the design. The second case requires the
development of a micro-expert whose domain of expertise is
the coordination and evaluation of other experts' plans.
This micro-expert should contain behaviors 1like those
discussed 1in Appendix A. The example simulator presented
in this thesis demonstrates the structure depicted in Part

[al1.

The design procedure can be decomposed into two broad
subprocedures, the "general design" and the "detailed
design”. Broadly speaking, the general design defines the

simulator and wuser layers, while the detailed design

refines these layers and defines the task layer.




L T T T T N N N T N N NN R AUV AR AVAS AT S S ST R e T T T e Y
The following steps comprise the design procedure:
1. General Design
A, Task Description
B. Environment Description
C. Knowledge Domain Description
D. User Behavior Description
o 2. Detailed Design
o A. Simulator Design
S B. Context-level Micro-expert Design
‘b C. Micro-expert Design
q The discussion in this chapter is somewhat brief, as it is
.
1 meant to serve as an overview of the entire design
Y
\l
p procedure, Many of the design concepts are more easily
ﬁ followed 1in the context of an example, and are presented
> : .
s more fully in Chapters Five and Six. A more thorough
-~
(7 ‘]i discussion of many of these steps may be found in Appendix
- D, Planning Task Simulator Design Guide.
&
o 4.2. GENERAL DESIGN
w:.
- 4.2.1. Task Description
N The task description defines the task to be performed
.
of by the simulator, identifies the real-world individual or
LY
- group responsible for performing the task (the task
¢ specialist), and defines the inputs and outputs to the
N4 ey
‘$ oy task specialist,
)
]
i IV - 4
e e e e U o T T e

. - -
LA
»



AL ADE S L4 AR CMLUDNMOMLNDARADADALARAEAE AL SN AR N . . e

MMM
ot S e e e e

v R e s v S et Ta Jha Rt S e e ie b i i

The input definition details the resources and
information sources available to the task specialist for
the performance of his task; the output definition details

the content and destination of all required reports.

4.2.2. Environment Description

Describing the planning environment consists of
identifying the entities superior, subordinate, and
collateral to the responsible individual performing the
given task. Note that this step 1identifies the
individual's chain of command, as well as any coordinating
units that affect the performance of the task.
Additionally, the environment description includes the
description of the communications model to be used in the

simulator.

4.2.3. Knowledge Domain Description

The primary knowledge used in planning is in the form
of decision heuristics. These are procedural and are
naturally represented by behaviors in ROSS. The
declarative knowledge 1is the data wused to drive the

decisions (hence, data-driven). The data needed to

R B N
MR . v . MERES
. e et a e g ety

e e

NN

PR R,
o ay G- .
AP Bl B P G SV o VL

. S i e Ao Rave Sl Bt et S Sast S et ihan Jartdng-
S T e S e . RO

-

.




PR S i S RaiC Tt St T R St gt st i At R g Caatg o i g A S A A S A S e T I (ORI

~
-

perform the task is determined by the situation, i.,e. the
- proper situation assessment is the collection of the data

required to make an informed decision.

Describing the required knowledge domains consists of

identifying what data is needed to perform the given task.

The description should 1include whether the data is
expected to change with time and whether the data is
available to more than one individual. The data should

also be classified by type: data can be facts,
constraints, representations of the environment,
objectives, descriptions of the goals, etc. The way the

data 1is used by the procedural knowledge will determine

G- the method of storing the data in the extended ROSS

environment.

4.2.4. User Behavior Description

Describing the user's behaviors consists of
identifying what functions the user will have to perform
during the simulation (if any). Typical functions would
include furnishing certain required input information and
- possibly critiquing the simulator output. For
particularly difficult portions of the task, the user may

also be <called upon to perform certain data processing or

B reduction tasks. One example of this type of behavior

b~
. IV - 6

VRV TSN PO PR A S

".‘l .




oo Treve 'Y i A . A
EVACRETE o o g A Juit A A A el deionh Ne ) Nl W el i A Tl “| e s G S D e ARG RN

[N A N

exists 1in SAMPLE, where the user furnishes terrain data to

the simulator based upon reading a standard map.

4.3. DETAILED DESIGN

4,.3.1, Simulator Design

During the simulator design phase, the simulator
actors are identified, actor relationships are defined,
and the task-specific "“controller actor"™ and "designer
actor" are specified. The controller actor is responsible
for the proper sequencing of the simulator, while the
designer actor 1is responsible for the dynamic creation of
the required instances of the simulator actors. Also, any
extensions to the task simulator system functions are

incorporated during this phase.

4.3.2. Context-Level Micro-Expert Design

In the context-level design of the micro-expert, the
micro-expert task algorithm is defined. The algorithm
should be explicit enough to allow a non-expert to follow
the steps and produce results comparable to those of the

expert; therefore, the algorithm must embody the expert

Iv - 7




R

)
N

.......

knowledge required to perform the task (which is normally
provided through specialty training and experience). Much
common-sense (non-domain-specific) knowledge will Dbe
embodied in the heuristics of the task algorithm. However,
care must be taken to also include the necessary
"world-knowledge” that 1is taken for granted by the human

planner.

4,3.3. Micro-Expert Design

This step consists of a top-down refinement of the
task algorithm into ROSS code. Given that the algorithm
is sufficiently explicit, the environment 1is properly
defined, and the required data are properly represented,
this step should be relatively straightforward. The use
and classifications of the data will drive the selection
of the representation mechanisms, and the inherent
modularity and transparency of ROSS makes coding the
algorithm quite facile. Additionally, the task does not
have to be completely defined prior to implementation of
portions of the algorithm, ROSS supports the dynamic
creation of actors and dynamic addition of behaviors; so,
through the use of "stubs", the development and refinement
of the micro-expert can be done in an incremental,

evolutionary fashion,

..................
.......

CEERS I e T B R N P P I P I N . O . SR

- T W e odd PR BE SR A S N D i i R e e i e T S T S A . T S B
Lo e AR A AT R T T e . .




P ORI e o Avie R i A eCie st AT SACHA ARSI RSOSSN .*-_.1.'—,.1

CHAPTER FIVE

. SAMPLE GENERAL DESIGN

5.1. INTRODUCTION

- The sample system we have implemented is called
- SAMPLE (Surface-to-Air Missile Placement Expert). The
purpose of SAMPLE 1is to demonstrate how the design
procedure in Chapter Four may be applied to the simulation
of planning tasks. The micro-expert developed for this
thesis 1is not complete, in the sense that it accomplishes
e all of the functions that a human expert does in the
(;‘ solution of the given task. 1In fact, it operates on only
a limited number of situations that the human expert would

" have to contend with. However, we believe that the
development is complete enough to illustrate the issues

. involved in planning task simulation. We feel that the
< extension of the micro-expert into a complete simulator is
: a problem in design refinement rather than definition or

specification.

In another sense, the micro-expert has Dbeen
over-designed, 1in that some design features have been
N included that are not explicitly needed in the solution of

the given task. For example, the communications model

- incorporated into the simulator environment 1is not




e

PR 4

f._(A - - e ey - rrr
OGO, - OERECaORNRE  DEhl>

MRS AN 3 i)

Ol B4 A A A N AN L AT NN

.
U]
DY
Ay

BN
L

....................

necessary for the solution of the task. The reason that
such features have been included is to demonstrate how the

features can be incorporated into a complete system.

Solution of the example task could have been
accomplished through the wuse of an optimization routine,
along the lines of an operations research project.
However, we chose to develop SAMPLE to act in a manner
similar to the human planner to take advantage of doctrine
and the heuristics they embody. Either approach may be
used for the construction of micro-experts. The decision
should be based on the application of the micro-expert,
and the use of 1its output by other experts of the

simulator.

Our primary goals in developing SAMPLE were to make
it simple enough to clearly illustrate our design
philosophy, and yet complex enough to demonstrate that

real-world problems can be solved by such a system.

5.2. TASK DESCRIPTION

The task that SAMPLE will perform is that of choosing
the deployment 1locations of the firing and headquarters
batteries of an Improved-Hawk (I-Hawk) triad battalion.

(We will use the terms Hawk and I-Hawk interchangably,

.....................




.............

since only the missile system characteristics differ.) We
have limited the task domain further by specifying that
the site selection will only be done for the case where
the battalion is in direct support of a division in a
defensive posture, the supported division is flanked on

both sides, and the division area is rectangular in shape.

The real-world individual responsible for this task
is the I-Hawk battalion commander. Figure V-1 pictorially
describes the site selection task. The commander has
three firing batteries, each consisting of one base
platoon and two deployable platoons, at his disposal. He
places these firing units on suitable terrain in such a
way as to provide an air defense “umbrella" for the
supported divisidn against low-to-medium altitude threat

aircraft.

Figure V-2 summarizes the task inputs and outputs.
Army field manual FM 44-90 describes the required input

information for the performance of this task, consisting

1. General guidelines and policy directives from the
Group Air Defense Headquarters.

2. Threat intelligence information from division
intelligence.

3. Battalion operational status from subordinate
firing batteries.

4, Division posture and objectives information from the
supported division.

5. Locations of friendly air defense units.

6. A topographical map of the supported division area.




. Composite Incoming
s Air Defense Threat
- Projection Aircraft

| —

Planning Miniumum
Radius Projection

FEBA

A A
/ B —
B
C
Distance to Closest Distance to Closest
Left Flank Firing Unit Right Flank Firing Unit

Capital Letters Denote Firing Batteries

e Figure V-1, Typical Deployment Scenario




( - Policy Directives Deployment Plan
o from Group Air ::::::{:::} to Group Air

. Defense HQ Defense Commander
- and Division

o Commander:

» Threat Hawk

Intelligence ‘ Triad - Primary
s from Division Battalion Locations of
- Intelligence % Commander —_—> Firing Units

and Headquarters

. Battalion

- Coverage
] Operational Footprint
kN Status from ‘
3 Subordinates # - Plan Analysis
o
- - Supplementary
o) Disposition of and Alternate

-y

Supported
Division

:' Locations of

- Friendly Air

( (]i Defense Units Deployment Orde. s
X ::::i:::’ to Subordinate

- Units

:3 Topographic Map
N of the Supported

Division Area

Firing Unit
Locations

-

‘5

. * -~ Not Used By SAMPLE

b

>

P Figure V-2, Task Inputs and Outputs for the Site
? Selection Task




Not all of this information 1is used by the SAMPLE
task algorithm. Items 2, 3, and 4 are included as
"typical" values, and not as variable input values. Item
1 consists of system characteristics and mission
objectives. The system characteristics determine the
parameters of a usable site and the planning radius (the
effective range of the radar and missile system). The
mission objectives include the commanded projection
(extent of coverage into enemy territory) and adjacency
(distance to neighboring SAM sites to provide overlapping
coverage). Appendix B, "“Site Selection Objectives",
describes how the site selection procedure changes in

response to changes in this input information.

The required outputs consist of a deployment plan and
deployment orders to the subordinate firing batteries. The
deployment plan is forwarded to the Group Air Defense
Commander and the supported division commander.,
Information in the deployment plan includes the locations
of the three firing batteries, the 1locations of any
deployed platoons, a radar coverage footprint, and an
analysis of the planned deployment. The analysis includes
reasons why any mission constraints were not met by the
deployment plan, and the reasons for deploying deployable

platoons.

............................
........

.- w el .
B .
PO P W S P




-'. “' l‘

o

Al -‘l,"','
R

2

)

SAMPLE does not include the coverage footprint in its
ouput to the wuser, nor the 1locations of deployable

platoons.

5.3. ENVIRONMENT DESCRIPTION

. Pigure V-3 details the organizational environment in
which the Hawk battalion commander performs his task. The
superior unit of the Hawk battalion 1is the Group Air
Defense Headquarters, and the subordinate units are the
three firing batteries assigned to the triad battalion.
Because the Hawk battalion 1is 1in direct support of a
division, the Hawk commander 1is also responsible to the
division commander; this is modeled in SAMPLE by providing
a command channel between the division commander and the

Hawk battalion commander.

The Hawk battalion commander is also responsible for
maintaining coordination with the supported division's
organic air defense chief, and has collateral (information

only) access to the "sibling" Hawk battalions in support

of the divisions on either side of the supported division.




P

" ,‘l

IR TR,
R AT

.j.l.l!
» e

AR

- e T a® W auTd" e v T W e T e T e -
Y Y N Y L o e Y s T L T L R s T e T T A e e e T T T e

2,

.
<

Group Air
Defense
Commander

Supported Hawk ",
Division Battalion |[i!
Commander Commander |!!
A —— g
L -

Headquarters Firing
Battery Battery

th

|

| -

Base Firing Deployable
Platoon Firing
Platoon

A Figure V-3, Organizational Structure of a Triad Battalion
S in Direct Support of a Division

B A A R
At T e e s e e e T
AaladelatanaS sl S0 St nlS

L

b




................

;L

The communications model used in SAMPLE is

illustrated 1in Figure V-4. Each Hawk battalion commander

DI = SR
(o

has four communications channels assigned to him, two

U]

networks and two links. One network connects the members

N )

-
»
-

of the Aair Defense Group (the Group commander and his
subordinate Hawk commanders), while the other connects
each Hawk battalion member (the Hawk commander and his
subordinate battery commanders). The two links establish
contact with the supported division: one is a command
link to the supported division commander, while the other
is for coordination purposes to the division air defense

chief.,

‘[; We feel that this type of communications model could
easily be extended to realistically simulate the command,
control, and communications behavior exhibited by an
actual Hawk battalion. For example, by assigning a
frequency attribute to each comm node, and by implementing
a communications protocol as part of the ROSS behaviors of

the nodes, the messages passed among the leading actors

would closely resemble the message traffic of an actual

battalion. Also, dynamic removal of a comm node from the

FENE. oA RSN Rl ACAIAILIAILIGS  HAERENEN

SAMPLE environment would correspond to the destruction of
an actual communications capability, and duplicate nodes
could be added to the system to model real-world

redundancies. Behaviors to model the effects of

saturation and jamming could also be incorporated.




% CARCILAL O SN £ A UML) CCEAOLIOAE SEAELE LEA L A ACREA FA DU e g g T T S S T T

Group
Commander

Hawk Hawk
Commander Commander
1 Hawk 3
Commander
2

[A] Group Network

link link
Division — Hawk Division
Commander Commander - Air Defense
Commander
network
Battery A Battery C
Commander Commander
Battery B
Commander

[B] Other Communications
Channels

Figure V-4, SAMPLE Communications Model

v - 10

- - et~
PR -‘-'-\.'." CYR ST vt .'-\.‘.'.'.‘-\.“‘-“..'.“J
WAEFLRFGES FS M. S ALY G VR v WAL Ok W v L W IR W




5.4. KNOWLEDGE DOMAIN DESCRIPTION

5.4.1. Areas of Expertise

The Hawk commander needs expertise in the following
areas to effectively place his firing units:
l. Hawk system characteristics and parameters.
2. Situation assessment.
3. Terrain,

4. Deployment objectives and doctrine.

System characteristics refer to the operating limits
of the Hawk surface-to-air missile system, such as maximum
range against low-to-medium altitude targets, maximum
allowable site gradient, minimum required area to place a

firing unit, etc.

Situation assessment refers to the ability of the
commander to react to the requirements of his current
situation and come up with a deployment plan that meets
mission requirements. Specific abilities of the commander
include modifying the expected system range based on the
expected threat, incorporating the constraints of
superiors into his plan, and choosing the appropriate

strategy based on the available terrain and assigned

mission.




.....

The commander must know how terrain 1limits and
enhances the capabilities of his weapon system. Also, he

must know how to read a military map and decide whether a

given location is suitable for placing a firing unit.

'

§§ Finally, the commander must know his mission, his
.:g short-term objectives, deployment doctrine, and how these
‘;d factors drive his selection of firing sites. Established
'EE doctrine 1is what provides the commander with the decision
:E; heuristics used in accomplishing his task, while the
:; mission and the situation objectives guide the commander
;E in choosing the proper heuristic to apply in a given
N situation.

;i Not all of these areas of expertise are fully
3? implemented in SAMPLE. For example, our task algorithm is
Jé: based on a constant system range (known as the "planning
35 radius") that does not take into account the expected
?15 threat's altitude or electronic countermeasures. However,
;i we have used a conservative, or worst-case, value of this
;3 parameter, so that the algorithm solves the more
3£ highly-constrained case. Additionally, we have kept a
E{ human in the 1loop to provide abstracted terrain data to
ji. the system, as opposed to automating the map-reading
o8 function.

&

-

4 V-lz

e

PR . - - - . - N . - B . - - - " v P T S S S AU "~ R U "
e e N e e T e AL AT NS A T T N

- ™. - - . " Pav*m "¢ a e -~ " e - CHr L S N




5.4.2. Knowledge Domains

The Hawk commander's expertise can be classified into
two major knowledge domains: the knowledge needed to
identify acceptable sites, and the knowledge needed to
evaluate and choose the "best" sites. An acceptable site
must be near an accessible road. The terrain must be
fairly flat over an area of approximately 400 by 400
meters. The ground cover must be light enough to allow
the equipment to be brought in with wheeled vehicles and
maneuvered. Most importantly, a site must be in a
location where it meets the mission objectives of
projection and adjacency and yet retain a degree of

security from enemy artillery.

The evaluation and selection procedure requires
knowledge of the interactions of the candidate sites.
Sites are evaluated on the degree of acceptability (based
on the criteria 1listed above), the dominance of the site
(height, 1in order to project over terrain features that
would mask the radar), and the degree of overlap between

sites. One desirable condition is to have the site within

the coverage umbrellas of neighboring sites in order to
3 protect each other from attacking enemy aircraft. The

selected sites, therefore, cannot be chosen independently

of each other, but must be evaluated as a group.

e o™

LS - .. K - - = N - . >. . . . L PR - - . - e . Lt e - -
SRR, I A . : . . o SN




These two knowledge domains <clearly are not used
independently of each other. The evaluation process uses
knowledge of the acceptability of a site, and sites are
not tenatively selected based on the acceptability:
criteria alone. In particular, acceptable sites may lie
in valleys, but would not be examined until all dominant
sites were eliminated from consideration. This.prevents
the commander from selecting tentative locations that
would not compete well 1in the evaluation process. The
dominance of a site 1is an evaluation criteria, not a
factor contributing to the acceptability of the site. Both
knowledge domains are used interactively by the commander

as needed. The process of wutilizing the knowledge is,

therefore, opportunistic,

5.4.3. Data Representation

System characteristics are static, 1in that they do
not change from one scenario to the next. As such, these
characteristics are stored in a read-only database file
structured as a collection of Lisp setq statements. The
situation assessment data are quasi-static, in that the
data change from one scenario to the next, but remain
constant throughout a scenario. These data are stored in

the personal memories of the various leading actors,

Terrain data remains constant throughout a scenario (since

YT BT e AT T e T e T LT T

YA T AT AT ISR TR T AT R IR TRTRS T T T RN b nj*.Tf._v NI AT TR TN T ISNTR T T




- we assume that the supported division is not moving), but !

the focus of attention of the micro-expert changes often.
p

Therefore, the current terrain data are dynamic, and are
- stored on scratchpads.

.

Generally speaking, data are grouped and stored as

-

table or list structures. For example, an individual hill

i""
v RPN

is represented as a 1list: the first element 1is the

.
]

LA AN

location of the hill, the second and third elements are

Ty
.

on
P

the elevation of the hill and 1location of the nearest

‘v
.
:

‘.

road, respectively.

. "'/l,‘

Dl S
S
.

5.4.4., Heuristics

Two types of heuristics are used in SAMPLE: decision
heuristics and case-selection heuristics. Decision
heuristics are the rules used to choose locations from a
list of possible candidates, and are implemented as
Hawk-commander behaviors. Case-selection heuristics are
the rules wused to determine which decision heuristics to
apply in a given situation. Case-selection heuristics may
be either implemented as behaviors, or "designed-in" --
implicit in the 1limited scope of the task algorithm,

Limiting the scope of the algorithm simlifies the

micro-expert design and implementation, resulting in a

less robust system. However, after development of the




limited micro-expert, the case-selection heuristics may be

changed to behaviors. The micro-expert should be modular
enough to transport directly into the extended system as a

specialist in the limited case.

5.5. USER BEHAVIOR SPECIFICATION

The user plays the role of the Hawk battalion
commander's superior units, and therefore supplies the
scenario definition to the system. Components of the
definition include:

l. Degree of overlap required with adjacent Hawk units,
and the minimum required radar coverage past the FEBA.

2, Division width.

3. Locations of friendly air defense units.

The wuser 1is also responsible for inputting terrain
data to the simulator, under the direction of the
micro-expert. Map reading behaviors include:

1. Determining how many usable and unusable hills are in a
specified region.

2. Determining hill parameters, to include height,
location, and the location of the nearest road.

3. Determining the minimum and maximum elevations in a
given region.

Complete specifications of the user's interaction

with the system is presented in Appendix C, "SAMPLE User's

Guide”,




O L i T I e P e L S

i e T T a Va4

-
...... .

CHAPTER SIX

SAMPLE DETAILED DESIGN

6.1. SIMULATOR DESIGN REFINEMENT

Figure Vi-1 presents the block diagram of the

functional modules used in SAMPLE. Figures VI-2 and VI-3
L present these modules as ROSS actors, and illustrate the

hierarchical (inheriting) relationships among them.

E? Descendant actors will inherit the behaviors and

attributes of their parent(s); as shown in the figures, it

is possible for an actor to have more than one parent.

b

6.1.1. Hierarchical Structure

Given the design procedure established in Chapter

Four, all single-task planning simulators will exhibit a

-,

i high~level hierarchical stiuture similar to that of
Figure VI-2, The "something"™ actor 1is resident in the

3 initial ROSS environment and contains the behaviors

.; responsible for the creation of actors, manipulation of

) attributes, definition of behaviors, etc. The "thing" and

ﬁ "system" actors, as well as the generic descendants of

"system," are resident in the extended ROSS environment.

v «T T Sr - r— ¥ =¥y T e T YW YW
LRl e S N AR SLSTRTEIRT R




AACAE IS GRS AR S gNE AR St A I S DA T A ACE AR S A A A AR A P

USER

T - User Level
N (Scenario Definition)

) l

User Interface

Battery Division | Division Group
Cmdr Cmdr AD Cmdr
?j Cmdr Leading

//f‘ Actors

Someone Generic Communications Log Designer

Memory
System
1r Actors

U,I,’
AW Y

» P
,. ,...J“f'.'

Pl
a v .

A
L ]

4 .-A,
« IO

s Simulator Level

Personal Hawk Map
. Memory Commander Reader
(Leading actor)

. Scratchpad
< Micro-expert T

Micro-expert Level

- User Level
k (Terrain Reduction)

USER

Fig Vi-1l. SAMPLE Functional Modules.




(Something )

task- z//

independent

\\\A task-

specific

SAMPLE

System

3omeone

user-
interface

designer

co
channel

supporting
actor

Figure VI-2. SAMPLE Top-level Hierarchy.

------




AR AA D R A AR R RA s e g A S AL AL IE D RS TR T Db STt i A v -'._v'._: L LT

L)
Cetet LT,

Leading-
actor

Division-=
AD-
commander

Division-

commander
- Hawk=-
N commander

Part [A]

Group-
commander

a0 P N A

Battery-
commander

. Supporting-
. actor
N
-
user-interface designer
( ‘]i 5 )
2 (:Start-up-int ) Sample-
f designer
& personal-memory scratchpad
- T~ - !
- T - (ﬁawk-cmdr—pad)
. roup=
commandere
memor
j; Division-AD= Battery-
- commander- commander-
~ awk=
.:A Legend: Commandel"-
. emor

- = = — additional
™ parent

Part [B]

ﬁ: R Figure VI-3. Leading and Supporting Actor Hierarchies.

e e e e e et . LR — Nt e te ™ - -
e e T e T T T e et e T L T T e at et e J
. Cagte LT et e et e T R IR A A

. A 9 s - L PRI, MR, T,



The descendants of

the "sample" actor implement the
task-specific behaviors performed by the simulator, and
are divided into leading and supporting actors (as defined
Three).

in Chapter The micro-expert simulates the

real-world task specialist and 1is therefore a leading

actor (in the sense defined in Chapter Three). The SAMPLE

leading actor structure is shown in Figure VI-3, Part ([A].
The only SAMPLE leading actor with its own (i.e.,

non-inherited) behaviors 1is the "hawk-commander" actor.
The required behaviors of the other leading actors are
either performed by the user as part of the scenario
definition, or are handled by the inherited behaviors of

the "someone" actor.

6.1.2. Supporting-Actor Functions

Figure VI-3, Part [B] illustrates the supporting actor

structure.
"Start-up-int" is responsible for conducting the
scenario definition dialogue with the user.
"Mapreader" 1is 1logically a component part of the
micro-expert and will be discussed in detail in later

sections. function is to translate

Briefly stated, its




LA NG E WL RS AR RE AL ol B0 A N R U ST A ST T i P SR i Yl R At Sl bl S A S it T e A A Sl Rt FNRT "',.‘h"‘._

symbolic requests for terrain data 1into specific user
instructions and to relay the answers back to the

micro-expert,

"Sample-designer" 1is responsible for creating dynamic
actor instances. It translates symbolic requests such as
"Create an air defense group of 5 members" into the

appropriate system messages needed for the creation of the

group members.

The memory actors (hawk-cmdr-pad and the 1leading
actors' personal memories) are responsible for data
storage and retrieval. Their behaviors are inherited from
system actors, but they contain task-specific attributes
-- symbolic data definitions and initialization

information.

6.1.3. Actor Structure

Figures VI-2 and VI-3 detailed the hierarchical
structure of the SAMPLE simulator actors from an
inheritance point of view. In an object-oriented
language, complex functions are most easily implemented
through the interaction of distinct but logically related
actors, each performing a portion of the function. Figure

Vi-4 shows the relationships among the SAMPLE actors.




attributes attributes behaviors

o behaviors personal
" memory

Part [A] System or Part [B] Leading Actor
Supporting Actor

task
attributes algorithm

personal comm
memory nodes

()

Part [C] Micro-expert

Figure VI-4., Logical Actor Structure.

AR




The structure of a system or supporting actor is

., shown 1in Part [A] of the figure. These actors have the
simplest logical structure, being composed of the
attributes and behaviors included as part of the actor

definition.

Leading actors are slightly more complicated, and
their structure 1is shown in Part [B]. In addition to the
attributes and behaviors of the leading actor definition,
ff a personal memory and comm log (which are system actors in
: their own right) are "assigned" to each leading actor.
The purpose of these assigned actors is to extend the data

representation capability of the leading actor.

The most complex 1logical structure 1is that of the
i; micro-expert, shown in Part [C] of Figure VI-4, Because
: the micro-expert is a leading actor, it is assigned a
personal memory and comm log. In addition, the
?7 micro-expert 1is assigned a scratchpad and mapreader to
. allow the micro-expert to deal with terrain data. The
scratchpad 1localizes the terrain data representation used
by the component actors, while the mapreader extends the
procedural knowledge of the micro-expert. The mapreader
is responsible for querying either a human being for the
ﬁ; needed terrain data (in the case of SAMPLE), or an
automated terrain database (in the case of a totally

automated simulator). By separating out the mapreader

vi - 8

......... - R I ‘-
et T e A e T T e e .. [ P AR PR RN KN R I I U AL
----- i T PR I IR . S I G DI I I R ST SN TN S _A.'._‘LA-A..I‘_A-‘I\.‘}.A‘A




=

K
-y

.
»

Palal el

.
L

behaviors into a distinct actor, the behaviors of the

hawk-commander actor remain the same in both cases.

6.1.4., Actor Interactions

The focal point of the user interaction 1is the
“Continue" file. This file transmits definition and
constraint data requests to the user-interface actor in a
symbolic form. The user-interface formats the user query,
accepts and validates the input data, and passes the data
back to Continue. Based on the scenario definition, the
Continue file 1issues actor creation requests to the
(if sample-designer actor, which creates the actors. Continue

’ then transmits the required scenario definition and
constraint data to the 1leading actors in the form of
memory storage messages. Having thus defined the scenario

to the leading actors, Continue issues a '"start

simulation" message to the selected hawk-commander actor.

The message passing among simulator leading actors is
regulated by the communications actors assigned to them.
Having received "start" messages from Continue, the group
and division commanders transmit thier respective
information messages to the micro-expert through their
assigned communications channels. During the course of

e the simulation, the micro-expert will query his adjacent

vi -9

el ot a ST e wT AT R . T
"~‘~"-‘-1'-."-.' . -.\-‘ \~,‘-.\!\.u.\“‘§_'i
2 A




hawk commanders and the division air defense commander for
their locations, These requests and their responses are

again routed through the assigned channels.

6.1.5. System Files

Several task-specific system files serve to augment

the simulator actors:

1. "Sample-fns" is a compilation of the Franz Lisp
functions called by the simulator actor behaviors.
While these functions were developed to perform
task-specific operations, we hope that many can be
used in other task domains as well.

2, "Sample-abbrevs" contains the ROSS abbreviation
definitions used by SAMPLE. The abbreviation package
is not resident 1in ROSS, but was included in the
system installed on the AFIT SSC. This package

substantially improves the readability and
transparency of the code. Again, many of the
abbreviations are appropriate to any ROSS

implementation; in fact, most of the ones included in
SAMPLE were originally defined for SWIRL, an air
battle simulator written in ROSS and developed at
RAND (McArthur, 1982).

3. "Sample-design" contains the definitions of the global
variables wused in SAMPLE. It is read in by the Lisp
reader; therefore, the format of this file is tightly
constrained. The purpose of this file is to localize
static system variables and thereby permit easy
modification to the simulator.

4. "Continue" is used to "boot" the simulator from within
the initial ROSS environment. It contains the
instructions needed for the dynamic creation of actor
instances, and the messages needed to initialize the
created actors.

......... .-
e T T T
NI ) R A SR G R




6.2. CONTEXT-LEVEL MICRO-EXPERT DESIGN

The site selection task performed by a Hawk commander
in direct support of a division is described in general in
Army Field Manual FM 44-90. The following pseudocode
presents the first-level decomposition of the task
algorithm used in SAMPLE:

1

2
3

Conduct preliminary evaluation.

Determine forward reqions of interest.
Choose locations of forward batteries.

If solution is still feasible then

. Choose location of rear battery.

. Analyze the plan.

. Choose locations of deployable platoons.
Analyze the plan.

. Choose location of headquarters battery.
. Issue deployment warning.
eport.

o BN o BEN I e I & B
L]

10.

Only steps 1, 2, 3, and 10 are implemented in the
current version of the SAMPLE simulator. For the most
part, the behaviors required 1in the remaining steps are
modifications to the behaviors used 1in the implemented
steps. Note that if the given situation is not feasible
(that 1is, the algorithm fails to find suitable forward
locations), steps 4 through 9 are not attempted -- rather,

the user is notified immediately.

We would 1like to emphasize that the task algorithm
presented here is our interpretation of the information
presented in the field manual; the algorithm has not been
examined by an air defense expert for either completeness

nor accuracy. Because of the lack of expert review, ease




N of modification and clarity of presentation have been our
Tj. primary design goals. We feel that the task algorithm we
(; have developed <clearly demonstrates the potential of the
- proposed design methodology, and we believe that the
- extension of this algorithm., to a complete and accurate
. representation of human task performance would be
N relatively straightforward.

.

__-'

-5

o 6.3. MICRO-EXPERT DESIGN

>

e

iy

N 6.3.1. Micro-Expert Component Interaction

2%

A

-"u‘

- P Figure VI-5 defines the 1interactions among the
m s

< micro-expert components that occur during the execution of
Ef the task algorithm, The Hawk-commander actor generates
N

A symbolic data requests and passes these requests to the
5} mapreader actor. The mapreader then prompts the user for
fﬂi the required data and either passes the data directly to
*Q the Hawk-commander or updates the scratchpad. The
ff; scratchpad 1localizes the terrain data, and provides data
%ﬂ‘ storage and retrieval functions. Upon creation, the
i; scratchpad tables are initialized with the data contained
3 in the "sample-design" file described in Section 6.1.5.
o The Hawk-commander actor uses the information contained in
;g the scratchpad to drive the decision heuristics

S implemented in the task algorithm behaviors.

vi - 12




Hawk

local édata

Sample-design

table
definitions

Scratchpad

Commander

symbolic
data request

Maprea

local
data

der

data
request

terrain
data

USER

Figure VI-5. Micro-Exper

t Component Interaction.




@

SN YLATY
N

PRE S J"V_‘. “:. el _-:"i. h A i 4 A RIS A AR e s ) SN ARCR A S S e S b SRl g

6.3.2., Level Two Task Decomposition

Step One, "conduct preliminary evaluation", 1is further
decomposed into the following steps:
1.1. Collect required input information.

1.2. Reallocate battalion assets if necessary.
1.3, Determine planning radius.

During step 1.1, the Hawk-commander actor issues
location queries to its adjacent battalions on either
side. The responses are then stored on the assigned
scratchpad. Also during this step, copies of the data
from personal-memory (entered earlier) are stored on the

scratchpad.

Step 1.2 is not implemented; 1if it were, the
Hawk-commander would adjust battalion assets s0 as to
equalize battalion assets among the three firing
batteries. For example, if one firing battery had only
one of three missile launchers operable, then a launcher
from a full-strength battery would be assigned to the

weaker battery.

During step 1.3, values of the planning radius,
mutual support radius, and overlapping fire radius are
computed and stored on the scratchpad. (Appendix B
describes the definitions and significance of these

values.)

(e Bt e e 2 G0 NI S o e o o A g N A A
. ~ - - - - N ~ t - EER DA




.............
.........................................

Step Two, "determine forward regions of interest", has two
{ sub-behaviors:
“u
-
\

2.1, Compute region points.
2.2. Determine forward regions.

The real-world Hawk commander knows that, in the
" absence of other constraints, firing units would be placed
symmetrically within the division area. This symmetric
placement would yield forward batteries located one-fourth
of the division-width from the division edges and out of
- range of threat medium field artillery (about 12
- kilometers from the FEBA). Knowing the desired placement

- strategy, the commander 1looks for possitle deployment

{ (3' sites near the optimum points. This behavior has been

j% modeled in SAMPLE through the use of regions: based on
§ input constraints, division width, locations of adjacent
' units, and the planning radius, several regions are
3 defined 1in terms of the potential suitability of sites

hs

§ located within the region.

Ef Step 2.1 computes the values of the points used to

i# define these regions, while step 2.2 constructs the

.i representation of the regions in terms of the points and

stores this representation on the scrat:-hpad. By ordering
the search for candidate sites according to the potential
values of the various regions, the "look for sites near

here" behavior of the real-world Hawk commander is




simulated. For example, 1if several good candidates are
T_ h identified in the region nearest the optimum point, then

the algorithm can avoid looking for candidates in inferior
K regions. The wuse of regions does for the algorithm what
experience does for the real-world commander: avoidance

of an exhaustive search of the entire division area.

LR OO

Step Three is broken down into the following sub-steps:

3.1. Get the division characteristics.
If the division is flat
. then 3.2. Choose candidates using the
< terrain-free rules.
o else 3.3, Choose candidates using the
normal rules,
3.4. Determine best and alternate site pairs.

. .
LN U N RN

]

The purpose of step 3.1 is to determine whether the
division area is flat. Selection of deployment sites when
the terrain 1is flat 1is treated as a special case; since
all locations are equally dominant, the decision
heuristics change and the definition of candidate sites
Y changes. The current version of SAMPLE does not implement

step 3.2.

For each side of the forward division area, step 3.3

4 .
- decomposes into:
Loop for each region do
3.3.1. Get candidates in the region.
3.3.2. Score the candidates.
3.3.3., Trim the candidates.
-
<




Step 3.3.1 1is performed by the mapreader -- the
region 1is described to the wuser, the tarrain data is
prompted for, and the wuser's response is stored on the
scratchpad. The scoring procedure of step 3.3.2 is
described in Appendix B, Site Selection Objectives, as is

the procedure for determining best and alternate pairs

(step 3.4).
Cand:.  +rimming 1is a heuristic device that serves
to reduce ;2 amount of storage and computation required

to execute the algorithm., After each addition to the list
of cand:idates, candidates with higher (worse) scores and
lower elevations are eliminated from ° further
consideration, However, the ¢trimming 1is not performed

until the number of candidates exceeds five.

If at any point a candidate with a score of zero is
found (that 1is, the site is optimum with respect to all
selection constraints), then only higher sites will be
added to the candidate list (since only higher sites could

produce better sites).

Step 10, "report", consists of formatting and passing the
candidate pair data and alternatives to the user. Results
of an example scenario are presented in tabular form in

Chapter Seven, Summary.




3
a7
)
]
e
e
2

A ot
. a A' -. A' l‘ . t'
K LI RS

[
NN
[

"?-r‘r e
[. LA

4 ..' )

e
s

0 - J

MR 4

05‘." ..' .
A

4,

CHAPTER SEVEN

SUMMARY

7.1. INTRODUCTION

The purpose of this chapter 1is to present what we
feel are the most significant results of this thesis
effort. An example scenario definition and terrain data
table are presented first, along with the simulator
generated site selections for the forward firing
batteries. A short discussion of how the simulator
constraint representation resulted in the given solution
is followed by our projection of the potential
beneficiaries of this type of planning task simulator. The
chapter closes with our recommendations of further

research needed to realize these potential benefits.

7.2. TASK ALGORITHM RESULTS

Table VII-1 defines the scenario used for one example
session. An explanation of the terms used and values
allowed can be found in Appendix C, SAMPLE User's Guide.
Table VIiI-2 presents the parameters of the usable
candidate sites in the forward division area. The

unusable hills input during the session are not tabulated

.......................................

e N
D S
-------

TSR I ORI ..‘
AR A et alal. s an



A e e T L N R S e A T A A M R C I i S Y E Rt i b A R O R S EA T ARG g ]
L te P P . -5 P

herein, Table VII-3 shows the scoring of the individual
sites, and Table VII-4 presents the mutual scoring of the
interaction of site pairs. Appendix B, Site Selection
Objectives, contains the explanation of the site scoring

procedure and the metrics used.

Table VII-1l. Scenario Definition.

Parameter Value
Projection constraint 12 kilometers
Adjacency constraint 100% of planning radius
Division width 48 kilometers
Left-adjacent location (=12 -12)
Right-adjacent location (62 -=14)

Table VII-2., Candidate Sites.

Hill Location Elevation Location of

Nearest Road
Left-1 (12 -12) 450 (12 -12.5)
Left-2 (14 -=14) 520 (15 -15)
Left-3 (13 -8.5) 480 (12 -8.5)
Right-1 (38 =12) 620 (38 -12)
Right-2 (42 -15) 480 (40 -16)
Right-3 (47 -18) 430 (47 -18.1)




Table VII-3, Site Scoring.

Constraint Left Hill Right Hill

1 2 3 1 2 3
Adjacency 0 0 0 0 0 0
Projection 0 0 0 0 0 0
Safety 1 0 2 1 0 0
Accessibility 2 3 3 0 3 0
Optimality 0 1 0 1 2 3
Masking 2 0 0 0 0 0
Total 5 4 5 2 5 3

Table VII-4, Pair Scoring.

Hill Pair Support Class Total Pair Score
Left-2 / Right-1 1 8
Left-1 / Right-1 1 9
Left-3 / Right-1 1 9
Left-2 / Right-3 2 11
Left-2 / Right-2 1 11
Left-3 / Right-2 1 12
Left-1 / Right-3 2 12
Left-3 / Right-3 2 12
Left-1 / Right-2 2 14

The terrain abstraction shown as Table VII-2 was not
derived from an actual map; the values used were chosen to
illustrate concepts. For example, the hills on the left
side are roughly equivalent, while those on the right show

a greater range of scores.

Note that hill Right-l is included in the three best

scoring pairs. We would feel confident in choosing this

hill as part of the final deployment plan. The closeness




DO~ GENXNTES < { XK

e
L Sy -

* Y ¥

Yy
i
b Y |

of the scores of the left-side hills points out the need

for reporting alternate selections. The human expert

makes the final determination of which pair is "best".

7.3. CONCLUSIONS AND RECOMMENDATIONS

Based on our experiences in the design and
implementation of a limited planning task simulator, we

have come to the following conclusions:

1. ROSS offers a powerful environment for the development
and implementation of planning task simulators.

2. Task simulators incorporating the techniques of Chapter
Three, and developed according to the procedure given
in Chapter Four, can provide automated systems that
are highly modular and highly transparent to the end
user,

3. The potential benefits of similar task simulators are
great.

4. Much work remains to be done.

7.3.1. ROSS Environment

The power of ROSS, and 1its suitability for task
simulator implementation, derives from the ease with which
behavioral structures c¢an be integrated with declarative

data structures., By allowing the task specialist actor




» A P e
:"~‘ J' .l.-A"l. .4' ‘a‘ "‘ ..'

s
PRI

o)

PR A ]

o A T T S N T N R R R N O e R R N o L Ve VT LN LS, W

(whose Dbehaviors embody the decision rules) access to
symbolic data structures (contained in the various memory
actors), the designer 1is free to develop systems capable

of simulating complicated human behaviors.

7.3.2. Modularity and Transparency

The modularity of the simulator, as exemplified by
the simulator structure presented in earlier chapters,
allows the designer to change portions of the system
without redesigning the entire simulator. Also, much of
the work done in the development of one simulator may be
transferred to other simulators with 1little or no

modification.

The transparency of the system is demonstrated by the
code developed: much of the c¢ode can be easily read,
especially the first-level decomposition of actors’
behaviors. This near-English syntax, and the natural

representation schemes used, allows the development of

complex systems that non-computer experts can understand.

hadir B §

e




. S 7.3.3. Potential Beneficiaries

We Dbelieve that the following classes of users could

benefit from the development of the proposed task

- simulators:

™

R 1. Battlefield commanders could use the simulator to
i predict the most probable courses of action of the
. enemy or as a conventional decision aid to develop

decision alternatives.

-7 2. Training academies and war colleges could wuse the
s simulator as a training tool to demonstrate friendly
and enemy planning methods, and as an environment
L where experimentation can be performed as part of the
instruction.

3. War game developers at the Pentagon c¢ould use the
simulator as either the enemy or friendly troop
commander in a computer simulation. Simulators may
even be pitted against each other in such a scenario.

The intelligence community could use the simulator as a
test-bed to verify the accuracy of predicted enemy
planning models. Additionally, the system might be
used to examine the effects of erroneous, falsified,
or incomplete information -- false information about
the enemy on the model, or the effect that falsified
information would have on the enemy's decisions.

s

2,0,
.S
.

et
LR I LI

]
LA W N

AN

l}"
[

~ 7.3.4. Recommendations for Future Research

1

R A
[ I R B

The requirement of a human map reader to reduce and

—

o .
. .

input the terrain data severly 1limits the current

simulator's speed of operation and usefulness. We

XA
Y N

therefore recommend that the map reading function be

’
03

AR totally automated. 0f course, complete automation would

.

» '.- .'n.) K

VII - 6

e e et e T AT e AT At " .-
.‘\ .' a ‘.n



- P — T S O W N —r—nw—, - O g g —— i o e L i e
e A ian et I LA A e A A A Al AN S At i e MRS IRt € W S g P i g g LI

require a digital terrain representation of the type

. N discussed in Appendix E.

- The utility of the proposed task simulators,
= particularly as battlefield or training aids, would be
greatly enhanced by the addition of a graphics

input/output support package and natural language

LT
" ‘l ‘l ‘l

interface. The clarity of the simulator would be improved

by the addition of an interactive query mechanism as well.

The power of the proposed simulators would be further
enhanced by the implementation of learning mechanisms and
o~ the development of a coordination and general planning

micro-expert (of the type found in Appendix Aa).

v
)

I

s .

-3 We have stated many times that we believe that useful
gf' task simulators can be developed using the methods and
- techniques proposed in this thesis. Only further research
Eﬁ (extension of the SAMPLE simulator and the development of
- other simulators) will show the validity of our claim.

N

4{

A

X

¢




i - D it g o (ari gt S LA AT I Sl A M M e S R S A AR AMEO R S S SO -‘.-'T

BIBLIOGRAPHY

Alexander, Arthur J. Modeling Soviet Defense Decisjon-
making. Rand Corporation paper prepared for the
Naval Postgraduate School/UCLA Center for
International and Strategic Affairs Conference on
Soviet National Security Decisionmaking, Monteray,
California, August 1980. (AD-Al103362).

Davis, Randall, "Expert Systems: Where Are We? 2nd
Where Do We Go From Here?", The AI Magazine, 3 (2):
pp. 3-22 (Spring 1982),

Druzhinn, V. V. and D. S. Kontorov. Concept, Algorithm,
Decision (A Soviet View). Moscow, USSR: 1972,
Translated under the auspices of the United States
Air Force.

Fiegenbaum, Edward A., et al. The Handbook of Artificial
Intelligence. Stanford, California: HeurisTech
Press, 1981.

Foderaro, John K, and Keith L. Sklower. The FRANZ LISP
Manual. The Regents of the University of California,
April 1982.

Hayes-Roth, Barbara, et al. Human Planning Processes.
Rand Corporation report R-2670-ONR prepared for the
Office of Naval Research, Arlington, Virginia,
December 1980. (AD-A095107).

ROSS Language. Rand Corporation Note N-1885-A
September 1982,

Klah+-, Philip, et al. SWIRL: Simulating Warfare in the
F,

McArthur, Dave and Philip Klahr. The ROSS Language
Manual. Rand Corporation Note N-1854-AF, September
1982,

Ogawa, Hitoshi, et al. "An Active Frame for the Knowledge

Representation”, Proceedings of the Sixth
International Joint Conference on Artificial

Intelligence, pp. 668-675, Tokyo, Japan, 1979,

Sacerdoti, Earl. "Problem Solving Tactics", Proceedings
of the Sixth International Joint Conference on
Artificial Intelligence, PpP. 1077-1085, Tokyo,

Japan, 1979.

BIB -




TRRY LANTaR
] :"n.f‘l'cfx'

e
v oo
W . B

***********

Stefik, Mark. "Planning and Meta-Planning", Readings in
Artificial Intelligence, po. 272-286, Palo Alto,
California: Tioga Publishing Company, 1981.

US Army Field Manual FM 44-90, Hawk Air Defense Artillery
Emplacement. Washington D.C.: US Goverment Printing
Office.

Wilensky, Robert. Planning and Understanding. Reading,
Massachusetts: Addison-Wesley Publishing Company,
1983.

Winston, Patrick H. Artificial Intelligence. Reading,
Massachusetts: Addison-Wesley Publishing Company,
1977.

R 2 el e .‘1




-

P
1 v Y Y
r

A

i
AR A

- a

APPENDIX 1

PLANNING TACTICS

As stated 1in Chapter 2, a general planner must have
at 1its disposal a set of tactics for decomposing the
problem into subtasks, delegating the subtasks to more
specialized entities, and resolving the conflicts that
appear when integrating the subtask solutions (or
proposals) to form the plan. This appendix will present
two bodies of thought: the first from the paper "Problem
Solving Tactics" (Sacerdoti, 1979) which examines the
strategies and tactics of the planning process; the second
from Robert Wilensky's book "Planning and Understanding"
(Wilensky, 1983) which illustrates a large collection of
"meta-entites" to implement his theories of plan

generation and understanding.

It should become apparent that while the two
approaches differ, the underlying mechanisms are quite
similar. In both approaches, subcomponents of the planner
work to recognize particular types of goal interactions.
The subcomponent is evokxed when the interaction occurs,
and contributes its "expertise" to the total plan. The
difference 1is in the perspective of the explanation. Earl
Sacerdoti presents the basic strategies of automatic

problem solving, and tactics to improve the efficiency of




. AD-A138 866 A PROPOSED MILITARY PLANNING TASK SIMULATOR USING ROSS 2/2
LANGUAGE(U) AIR FORCE INST GF TECH HRIGHT-PATTERSON AFB :

OH SCHOOL OF ENGINEERING G H GUNSCH ET AL. DEC 83
NL

UNCtﬁSSIFIED AFIT/GE/EE/B3D-24" F/G 5/1




AL B |

-~

R

AN

PO

el s AN

-
- at

Lo

o
e
P B

.
LY .
\‘. *

P YUY, SR

16

EEE
K EEE]

O off o a3
d3IA3a2394,3

2l =l

1.4

.
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

ol

.\....,,.M.n.anu_..ﬂ, . .w......v.n..nﬂhﬁﬁ. ..-..\a.....n ......n.u.-.v.. - o .%.r.........-. 10 ...................f..f.v-.* - AR

t s v 7y H t




T

]

the strategies. Robert Wilensky presents a handful of

. oy 1
" - ... )

possible goal interactions, and the micro-entities that
handle these interactions. A collection of these
micro-entities, with the appropriate control mechanism,
can be collectively considered to be a tactic in the

Sacerdoti sense.

s

. A.l. STRATEGIES
L
- This section 1is based on the work by Sacerdoti
B (Sacerdoti, 1979).
"
¥ Typically, planning the actions necessary to achieve
‘ ‘Ei the goal involves an extensive search through a set of
, possible solutions. This volume of alternatives, known as
{ the search space, demands that the planner have a number
of control strategies to guide the search. The search
; space is normally described as a tree with the initial
state as the root, and branches along every alternative,
" Hopefully, at least one of the branches leads to the goal
.
o state. Another possible tree is one with the goal as the
3 root and the initial state in the upper branches. As one
g considers all the factors and all the alternatives, the
i search space becomes enormous and the need for strategies
g to limit the space becomes clear.
1
_v'
' -
1
7
) A -2




e e
I.l"‘.l

L%

%Y

Y

The first strategy Sacerdoti discusses 1is the
"means~ends-analysis" search algorithm used by GPS and
STRIPS (Winston, 1977: 130-42) and works as follows. The
"difference" between the 1initial and goal states is
determined, and actions are examined to find the one that
would most reduce the difference when applied. (The
methods of judging the differences and determining
suitable metrics with which to make the evaluations are a
science unto themselves, and are beyond the scope of this
thesis. Many of the factors involved are highly
domain-dependent, and so a discussion of them can best be
done only in the context of an example.) Once a suitable
action 1is found, it 1is applied to the initial state,
resulting in an intermediate state that is closer to the
goal than the initial state is. The process continues in
the same manner, moving ever closer to the goal until it

is reached.

Sometimes the most promising action cannot be applied
directly to the initial state. The preconditions of the
action are then chosen to be the subgoal, and a search is
made to reach the subgoal state from the initial. This
strategy is applied recursively until a sequence of

actions can be found that 1lead from the initial to the

original goal state.

RN




Ny
' A

) ‘l_‘" .

-
. .
L3 T I e ]

NARANNS

1
:.u
<
2.
o
w

The second important search strategy is

"backtracking". Backtracking, as described by Sacerdoti
is the mirror image of means-ends-analysis. Starting with
the goal state, actions are examined to find ones that
result in the goal state. The preconditions to these
actions are then used as subgoals, and the strategy
reapplied to the subgoals until the 1initial state
satisfies the preconditions of an applicable action. At
this point a path will have been traced from the initial

state through the intermediate states to the goal.

As Sacerdoti points out, neither of these strategies
is adequate for complex problems since the search space
grows so quickly, especially with multiple goals
(conjunctions). Also, ordering of the subgoals may be
important, but these strategies have no reason to prefer
one conjunction over another. Consequently, the search
may try to find a solution to achieve the subgoals in an
impossible order. Neither of these strategies
distinguishes between the important and the detail.
Additional information must be utilized to focus the
attention of the problem-solver to that which is critical
to the problem. This information is supplied through the
use of certain tactics that are applied with the basic

strategy to limit the search space.




. £
.............

............

A.2, TACTICS (Sacerdoti, 1979)

-~ ' This section is also based on the work by Sacerdoti

y (Sacerdoti, 1979).

The first and most obvious tactic 1is called

"hierarchical planning”. The most important subgoal is

tackled first, followed by the next most important, etc.

The solution of the important subgoals often leaves the

world in a state from which the less important subgoals

can easily be reached. This method allows the planner to

abstract the situation and the actions, postponing the

details and subgoal interactions for later, and allows him

to concentrate on the critical decisions without

(ib overconstraining the search with influences by less

important subgoals. Once the general plan is sketched

out, the conflicts and redundancies can be resolved

individually, with methods that may have been incompatible

with the solution of the main subgoals.

This abstraction can be extended to multiple levels,

ﬁ each level ser&ing as a skeleton to guide the

problem-solving process at lower levels. This "hierarchy"

vf plan skeletons allows complex problems to be broken up

% into a set of simpler subproblems. However, plans can be

created that appear workable at the high level, but which

fail in the implementation of the details. The tactic

ERATN A" LIS o.l.\-.'- ..'- . - e . . St e e et '...'_-.";-' ."-. P P R M o N
MA'. AW WLS N v y s Wt ‘J..: DRUPEFRIN IS WY W ‘.A‘,'.A.'A-A,'.L‘-,-i



that resolves this problem, “hierarchical plan repair",

checks that all the intended effects of the high-level

¢

plan are achieved by the collection of 1lower-level
actions. Only a small number of checks need to be made,
due to the heirarchical nature of the plan. The plan can
then be repaired, using a variety of methods (Sacerdoti,
1979: 1079). This verification, accomplished as the plan
develops, insures that necessary knowleége is not left out
by the abstractions. The wvalidity of the plan is then
limited by the available world knowledge, rather than the

power of the abstraction.,

.

Instead of abstracting the situation as in the

e
Y

heirarchical tactics, "bugging"” deliberately makes
ﬁ assumptions that oversimplify the problem of integrating
subplans. The planner produces an initial "almost right"
plan with bugs in it. However, the bugs are expected and
S of a limited number of types, and so can be remedied
easily. Other names for this tactic are the "debugging
approach" and "problem-solving by debugging almost-right
plans.” The latter was coined by G.J. Sussman, who first
< employed the bugging technique in his HACKER system

- (Sussman, 1975).

S
N Principles of these first tactics are incorporated
]

into the tactic "pseudo-reduction" for dealing with goals

that include conjunctions (goal 1 AND goal 2). The




AT 4 ACE A A e A I S P S G A MR S A - 4 AEA A EACAE MEAEAERCAAEACLOAEAOEE SR EAEASD

4
{ conjuncts are treated as subgoals, but they may have the
4

- o same importance so they cannot be ordered as in the

] hierarchical planning tactic. Instead, ordering is
‘ﬁ ignored initially and each conjunct is planned
independently.. The plans are then integrated in a manner
‘ similar to bugging. This tactic reduces the amount of
% backtracking by avoiding premature commitments to the
EI ordering of the conjuncts and subgoals.
N 4
3 An interesting alternative to actively seeking out a
i solution to a goal ot subgoal is the approach
; "disproving". Disproving uses a "pessimistic" analysis of
g the goal to try to show the futility of the endeavor. If
; any of a set of conjunctive subgoals is found impossible,
o ‘zb then it is of 1little value to work on the others.
ﬁ Furthermore, if a goal cannot be shown to be futile, the
f knowledge gained can be used by the other "optimistic"
N tactics.
A A.,3. META-PLANNING
P,
Ef This section is purposefully brief, since a proper
£¢ discussion of the issues of meta-planning would constitute
Eg a major section of this thesis. The reader is referred to
si the book Planning and Understanding by Robert Wilensky for
>

a thorough analysis (Wilensky, 1983).

S




The fundamental assumption of the book (as well as
this thesis) 1is that planning can be accomplished through
the coordinated efforts of specialists. Meta-planning,
simply stated, 1is planning about plans: the processes
involved in discerning the goals, delegating tasks,
formulating subplans, and integrating the subplans into
the final solution. Meta-planning is domain-independent,
in that the experts involved are applicable to any
planning function. Robert Wilensky adds an extra level of
expertise to the traditional meta-planner: his system
must also understand the situation in terms of plans. This
sets up a two-pronged attack on a problem -- plans can be
formulated to meet the specified goals by the planning
site of his system, and goals can be deduced from given
plans and actions of the players in the scenario. The
interplay between these two approaches becomes
opportunistic in nature, and the system will seek a
solution to the assigned problem in whichever fashion

works.

The author goes into great depth to explain various
goal interactions and how these are understood by the
meta-planning system, The control structures of two
systems (PAM -- Plan Applier Mechanism, and PANDORA --
Plan ANalysis with Dynamic Organization, Revision, and

Application) are explained, along with some details of

-------------------




’ S - Y A S0 2 i Y B R AP LR RN P L Y P D ) B St Ml i S Sal R A S S A \' RERRC TN DA e "-.v.’w
- .

N - their implementations. The problems that arose with these

systems are also discussed.

gy
k 5 A It is our believe that such an implementation of the

. meta-planning functions can be accomplished 1in the
.;: simulator environment we have developed. The author used
a knowledge representaion language (PEARL) which he
developed for the representation of the goal interactions
and relationships among "objects". However, PEARL
o~ discourages procedural attachment. While this was useful
in the development of the meta-entities, it becomes a

limiting factor to the growth of an extended system. We

)

U]
.
.-“.;'.-'.r A

¥

hold that ROSS provides an equivalent representation

‘E> mechanism as PEARL, but also provides full procedural

o

capability.

Ay
L.,‘n.l.'-

N
.6 & .

e s
- P

At
3 ENCYE L Y AR

A}

S
o,
n‘I

72
[l AN
s W I

P XA 4
e

N
Y
Ve

\.,,. g .;...- .'~.-‘;..“-..‘_-...-_ ‘f." NN R RTRTRT

AR SN SR T N
4

- e e T T T T T
At YL BANINENISINF RS K e




C A A X2

a¥e ¥

a8, 0, 80y

Bl
.'h

ataa gy g

£ LSS

s

L OS]

APPENDIX B

SITE SELECTION OBJECTIVES

B.l. INTRODUCTION

The purpose of this appendix 1is to present the
doctrinal principles guiding the site selection task
algorithm and the representation mechanisms used by the
simulator system to incorporate these principles. In
keeping with our implementation philosophy, the numerical
values used in the representation are meant only to

exemplify how the incorporation may be handled.

B.2. DOCTRINAL OBJECTIVES

Air defense doctrine defines the following objectives
that must be met to ensure adequate air defense:

Air Defense Projection beyond the FEBA.
Balance.

Weighted Coverage.

Mutual Support.

Safety.

U= W N
e o » o o

The projection objective requires that firing units
be placed far enough forward so as to enable engagement of
threat aircraft before entering the airspace of the

supported division. Balance requires that the entire

>y \..-.}-.-\’ \:\'.“-..\..:...\.-'. .:-._'.q_“ . : e, .:. by TN LY e e '_..-_..._ .}.: _.‘.-_ e -

...........

..........




AN
KAAPURS * 1 O

“

division area be 1included in the air defense umbrella

(also known as "Mall-around defense"). Weighted coverage
requires that 1likely avenues of attack be given more
protection by assigning multiple assets to those avenues.
This objective 1is to be met only to the extent that other
objectives are not sacrificed. In the context of the
direct support mission, weighted coverage implies that the
majority of air defense assets will be placed toward the
FEBA. Mutual support requires that firing units be placed
so that one unit can cover the blind spots of another
unit, 1if this 1is possible without violating the other

objectives.

Figure B-l1, Part [A], illustrates the definition of
mutual support. A circle of radius equal to the operating
range of the system radar is drawn around the location of
the firing unit. If ¢this circle projects past the
location of another firing unit by a sufficient margin,
then the two units are said to be in mutual support of
each other. For the purposes of SAMPLE, mutual support
will be established when two firing units are located

within two-thirds of the operating range of each other.

Part [B] of Figure B-1l illustrates another important
concept 1in placing firing units--overlapping fire. Two
units are said to provide overlapping fires when their

respective range circles overlap by a sufficient margin




e

2/3 Planning
Radius

Part [A] Mutual Support

‘-

4/3 Planning
Radius

Part [B] Overlapping Fire

Figure B-1l., Mutual Support and Overlapping Fire,

PO PR A A TR 0 ATV AP I SRR I S N St R T R PSS AP W AT T B




(taken to be four-thirds of the range in SAMPLE). One of
the implications of the balance constraint is that "gaps"
in the air defense coverage are not allowed; therefore,
firing units may not be separated by more than the

overlapping fire distance.

Air Defense doctrine also realizes that destroyed
firing units do not contribute to division air defense.
Therefore, an objective of "reasonable safety" has been
established: to the extent that mission objectives are
not compromised, firing units will be placed out of range

of threat medium field artillery (about 12 kilometers).

Figure 5-1 presented a typical deployment pattern,
and 1is repeated here as Figure B-2, The operating range
of the firing wunits 1is taken to be 30 km, which implies
that mutual support distance is 20 km and overlapping fire
distance is 40 km. Balance is achieved through covering
practically all of the division area by at least one
firing wunit. Balance 1is also achieved across division
boundaries by 1locating the forward firing units within
overlapping fire distance of the forward units of adjacent

divisions.

The given deployment also satisfies the projection
objective to the extent that the air defense coverage is

extended past the FEBA, Also, coverage has been weighted

........
----------------------
...........
.....
- .

PO
............
.............
.




: - Composite Incoming
s Air Defense Threat
Projection Aircraft

Planning Miniumum
Radius Projection

FEBA

A u o =
Y A

- K r' }_;’_.'_ "

N e

s ¢ ¢S L
[ S}

®

Distance to Closest Distance to Closest
Left Flank Firing Unit Right Flank Firing Unit

ey
LR ]

Capital Letters Denote Firing Batteries

>
.

B o

o Figure B~2. Typical Deployment Scenario




.

EACRNR A Al AR AR R AR S N ':.T

toward the expected avenue of attack (namely, across the

FEBA) by placing two batteries in the forward division

o
.
T
.

area. The distances between the firing batteries within

- the division area, while not quite satisfying the mutual
Ef support criterion, are well within overlapping fire
_  distance.

3

. B.3. SITE SELECTION CONSTRAINTS

E Doctrinal objectives, weapon system requirements, and
:_ available terrain all serve to significantly limit the
53 available firing battery sites. We have chosen to model
iﬁ the site selection task as the constrained choice of
*'. cib weighted site alternatives. Hawk system requirements and
;j the available terrain dictate which points on the division
;3 map are possible candidates, while doctrinal objectives
¢£ provide the means to weigh each candidate. Having weighed
EE each site, the site selection task reduces to choosing the
o combination of sites with the best composite score.

'ﬂ

;3 We have two methods of constraining the site
-g? selection process: identifying possible candidates and
ﬁf weighing the chosen candidates. A primary goal of
;E simulator development is to provide user transparency
;E (making the decision process understandable to the
5; o real-world expert). Therefore, the identification and
::: '.A‘:.
2 B - 6

------------ R A O AR




A AN

o

DRReg

s
BTN

AN

gl S
A

8

PPl ins
oL
DA A A

200

L] l.
R
LI Y S

S A A
Nhhh

l\'
‘~
-h

xS
>
it}

rn (l

weighing of candidate sites in the simulator should
directly relate to the corresponding process performed by

the human expert.

In SAMPLE, candidate identification is constrained in
two ways. The first 1is procedural, in that certain
portions of the division area are not scanned by the task
algorithm; for example, the area within eight kilometers
of the FEBA is unsafe to the extent that firing units are
not allowed in that area. Also, in the SAMPLE task
algorithm, firing units are constrained to lie within the
supported division area. The second way identification is
constrained 1is symbolic, in that only "usable" sites are
solicited (from the mapreader) as candidates. By making
the determination of "usable site" in the mapreader,
changes in the definition of usable will not affect the

Hawk commander behaviors.

Having determined a possible list of candidates, the
problem of weighing the candidates remains. In SAMPLE,
this weighing process consists of three steps:

1. For each candidate site, compute a constraint metric
for each constraint.

2. Determine the constraint classes based on the values of
the metrics.

3. Combine the classes into a score for each candidate.

.....




R DE N

Constraints. The single-site constraints incorporated

- into the SAMPLE task algorithm are:

\ .
LR S

e 1. Projection.
9 2. Adjacency -- mutual support between adjacent
s divisions' firing units.
N 3. Safety.
- 4. Accessibility -- nearness to usable roads.
) 5. Optimality -- balanced placement of firing units.
A 6. Masking -- dominance of terrain with respect to
Q) surrounding area.
0,
é ) Additionally, "because the overall deployment plan has
X three sites, support constraints between firing units are
1
“
IN included.
;% Metrics. Metrics provide a numerical value that can be
1]
- used to measure the relative "worth"™ of a particular
Py candidate.
" a>
4‘\
$§ Desired values of projection and adjacency are
. provided by the user as a part of the scenario definition;
.3 the associated metrics simply measure whether these
S
- desired values are met by a given site. 1In both cases,
LN the metric 1is the ratio of the actual value (based on the
X2 candidate's location) to the desired value.
"2,
- The safety metric 1is the distance of the candidate
Qj from the FEBA, and the accessibility metric 1is the
.2
.. distance Dbetween the candidate and the nearest road
?; accessible by wheeled vehicles.




In the absence of other constraints, the balance

L objective would yield a symmetric deployment pattern of
firing units: the forward firing units would be located a
quarter division-width from the division edges, and the

rear firing unit would be located on the halfway line. The
optimality metric used 1is the x-coordinate displacement

from the balanced configuration,

Emplacement doctrine specifies that the most dominant
ﬁ: terrain available is to be used for firing site locations.
The masking metric is a simple count of the number of
hills that are higher than, and forward of, the candidate
o~ site. For firing wunits within a division, the support
metric 1is the distance between units expressed as a

percentage of the planning radius.

Constraint Classes. Once the constraint metrics have been
calculated, the value is used to place the candidate into
-, one of four constraint "classes". These classes are used
to define candidate sets that are roughly equivalent.
Candidates falling into the same class cannot be
% distinguished as being "better" or "worse"; it is left to
: other constraints to make the determination, Loosely
speaking, the four classes correspond to heuristic
definitions of "good" through "poor". In a way, these
classes are quite similar to the notion of "fuzzy sets".
abstraction to four levels

that this

We believe

~ . t.
catat et AT e et et el e

.......
. -



. 's ‘l‘

contributes significantly to the transparency of the task

algorithm.

Scoring. The final step in the selection process is the
scoring of each site in the candidate list. 1Individual
sites are first scored according to the single-site
constraint classes Jjust described. Next, forward sites
from each side are considered as pairs and the support
class of the pair is incorporated. Finally, the pair with

the best score is chosen and the result reported.

The constraint classes are assigned an integer value
between zero and three with zero representing the best
class. The score is computed as a weighted sum of

constraint classes.,

The six single-site constraints are divided into two
groups: projection and adjacency are "mission"
constraints (supplied by the user), while the rest are
"supplemental" constraints. The class weights were chosen
so that changing a mission constraint from one class to
the next poorer class is "worse" than the worst-case sum
of any three of the other constraints. Since the worst
value of any constraint is three, the mission constraint
classes are multiplied by a weight of ten before summing
to yield the final single-site score. (Three supplemental

constraints can change from class "good" to "poor",

..............
.

\ - <7 -
-------------------

R W U

.
o

RN LY

LRl A




resulting in a value change of nine, and still be less

severe than a change of one mission constraint class,

which would result in a value change of ten.)

The pair score is computed as the sum of the
single-site scores of the two candidates, plus twice the

support constraint class of the pair.

We believe that this method of calculating pair
scores is adequate to model the decision heuristics used
by the real-world experts, and simple enough to allow easy
understanding of the implementation. Additionally, the
weights and class values can easily be adjusted to suit
the experiences of the experts for a more accurate

representation of the relative importance of the various

constraints.

B - 11

. e - ERE T T e PN
- R L R | LYY s, e PO
............

AR L SRS RN

a5

e .V‘ .« ® v.' -.' -.. . N ." L. .'_'. " - - - I-' 1" . “ -.. . - R

~

A ®

-

- A._. ~..~ A .-_..~ \..

AL NI S

N



sy
PR B

YRR
s 8

I R T

. y P
.'J'Jl'".l 7 s

- Ay

LSS

AN U

4 I‘..' o

>
o,
o,

i ol A S A oM A KL KR

APPENDIX C

SAMPLE USER'S GUIDE

C.l. INTRODUCTION

This appendix is intended to help the SAMPLE user
interact with the planning task simulator described in the
thesis body. Major topics include how to run the
simulator, interfacing with SAMPLE, and the directory

structure of the complete simulator system,

Prior to running the system, the user should be
familiar with the framework and content of the system
structure. As a minimum, the wuser should read Section
5.5, "User Behavior Specification," Appendix B, "Site
Selection Objectives," and Appendix E, "Using Terrain Data

in a Planning Simulation.”™

Because this system 1is intended to be wused as a
testbed for further research, user comments are earnestly
solicited. Suggestions, criticisms, comments, questions,
or identification of bugs should be addressed to the
Artificial Intelligence Laboratory, Department of
Electrical Engineering, Air Force Institute of Technology,

Wright-Patterson AFB, Ohio, 45433.

-




NN (BB
‘r(‘-"- K] ,"'_5_ i R

AR
SRR

tte -“'-'l‘
L S BRI P

' AN y
l‘l. 4 1, LA

AT LTS I

N '.l '.(\

AN

Y

” “‘
R ALY
,A.LLO.'.&

a

R -

P .' P
N R AR
3 ..I . e

|

o

a'e’a"a

C.2. RUNNING SAMPLE

SAMPLE is implemented on the AFIT Scientific Support
Computer (a VAX-11/780) running the UNIX operating system.
To run SAMPLE, follow these steps:

l. Log on to the system.

2., In response to the shell prompt,
type: cd /usr/ai/ROSS/Sample

3. Type: sample

4., 1In response to the "->" prompt,
type: (load 'continue)

At this point, SAMPLE is running. After a particular
simulation has been completed, the system will prompt the
user withs "Do you wish to continue (yes or no)?" An
answer of "no" will terminate the session and put the user

back in the UNIX shell; "“yes"™ will initiate a new

simulation with a different hawk battalion.

C.3. INTERFACING WITH SAMPLE

C.3.1. Input Formatting

The user interacts with SAMPLE in two ways--through

defining the simulator scenario, and reading the map for

the micro-expert. Before discussing the user interaction,

the required input formats will be described.

General. User 1input is passed to the simulator

through the Franz Lisp "reader", which restricts the




[ I e A AR A LML M L R A At A A SN AL At SR I PR Sl 3 P ST SN o

possible inputs somewhat. For example, commas have a
;: special meaning to the reader and must be avoided. Also,
input is not recognized until a carriage return is typed;
this means that mistakes can be corrected using
"backspace", but only before the carriage return is typed.
The reader incorporates a type-ahead buffer, so that
future inputs may be typed in before the present input is
processed. Finally, the reader expects input in the form
of Lisp "s-expressions." Briefly, an s-expression is

either an "atom" or a "list." An atom 1is either an

integer, a floating-point number (which contains a decimal

point), or a sequence of characters made up of the letters
;3 a-z, the digits 0-9, and the character "~-"., A list is
: G recursively defined as a sequence of s-expressions
enclosed in parentheses. For a further discussion of
reader syntax, the user is referred to the Franz Lisp

Manual (Foderaro, 1982).

Expected Inputs. For our purposes, most inputs will
either be integers or a list of two integers. Locations
are entered as a list consisting of the x-coordinate and
_j the y-coordinate; for example, "(-12 -34)<CR>", where the
- <CR> denotes the carriage return. Note that the list
elements are enclosed 1in parentheses and that commas are
3 not used. Other inputs will either be integers, a

"yes<CR>", or a "no<CR>",

...............

...........
......................




-------------------------------------------

N

o

-

..

2; - Input Diagnostics. During the scenario definition
%A = phase, a limited amount of error checking is done. This
gi will allow recovery from certain classes of input errors.
S% However, violation of reader syntax will cause the system
i to enter an error condition, effectively ending the
g: session. An error condition 1is identified by an error
Eg message followed by a "<1>:" prompt; typing "(exit)<CR>"
. will return the user to the UNIX shell. No error checking
:: is done during the map-reading phase; therefore, caution
;: is advised when entering map data.

2

;E C.3.2., Defining the Scenario
N &

?. As given in Chapter Five, the scenario definition
;: includes specifying the wvalues of the projection and

" adjacency constraints, the width of the supported
éj division, and the locations of friendly air defense units.,
e

After a brief introductory message, the system will

éﬁ begin prompting the user for information. The first
-E prompt the wuser gets is "Enter desired number of hawks in
4; the air defense group (3-7)." The "(3-7)" signifies that
.? the expected response to this prompt is a number between
?E three and seven, Inputs outside of this range are
S _ "forced"™ to the nearest boundary value; for example, if
;Z }E' the user inputs "10", then the value used by the system
?




N will be seven (the largest allowable value). Three is the
-:5 minimum allowed value because the selection algorithm used
assumes that the simulated division is flanked on both
sides. The wupper bound of seven was chosen arbitrarily;
values larger than three allow multiple simulations during

a single run, but slow the system response time.

;

Ed

- The next prompt the wuser gets 1is that for the
% adjacency constraint: "Enter desired adjacency constraint
. (70-130)." The wvalue of this constraint is the maximum
y allowed separation between firing units of adjacent
“a

N divisions, expressed as a percentage of the scenario
QY

2 planning radius. The significnce of this constraint, as
. ‘]i well as the projection constraint, is covered in Appendix
f B, "Site Selection Objectives," At this time, it is
- sufficient to note that 1lower values of the adjacency

constraint produce stronger constraints (i.e., constraints
. that are harder to meet). Again, if the user attempts to
:Z enter a numeric value outside of the given range, the
value is set to the nearest extreme,

v The third prompt is that for the projection
_L. constraint: "Enter desired projection constraint (5-12)."
Q The wvalue of this constraint is the minimum allowed radar
ﬂ projection past the FEBA, expressed in kilometers. 1In
{ this case, smaller values yield stronger constraints,

\4 .,

! N
& y
I,

v

~I

.
(9]
]
w

v et - . . o - .-
LN I TP SR e | .
SRR S RRASIOIE AP AR PERE PP EOPR O

A N I TP wtane e T T A L e ay T T
LI A A SRS f\-‘.-' o ~‘\-‘- 0 T T A AL ‘-“."‘.'\‘i

A A N Y




.......................

The next system output 1is not a request for input,
but a status message: "<creating air defense group>." At
this point, the simulator is creating and intializing the
dynamic actor instances that make up an air defense group
of the specified size. Depending on system load, this may
take a while, so the message provides assurance that the

system is still running.

The next prompt is for the particular battalion to be
simulated. The user is first reminded that only
"interior" battalions may be simulated: "Currently, only
those battalions with adjacent battalions on each side may
be simulated. Which hawk would you like simulated (2-i)?"
Here, the "i" stands for one less than the number of hawks

in the air defense group.

The division width is prompted for next: "Enter the
division width 1in km (30-60)." The emplacement algorithm
used assumes a rectangular division area 60 km deep;
therefore, the division width completely specifies the
division area, Typical division widths are about 45 km,

with the larger widths yielding stronger constraints.

Finally, the locations of friendly air defense
units--the Hawk batteries of adjacent divisions and the
supported division's Chaperral/vVulcan (C/V) battalion

headquarters--are prompted for. All locations are with

S i tiv i S St e eviiate s il S Bt S Shae
S T T AU




respect to a "virtual" coordinate system, with the origin
at the intersection of the FEBA and the left edge of the
division. The x-axis coincides with the FEBA (increasing
x towards the right edge), and the y-axis coincides with
the 1left edge (increasing y away from the division rear).
Under this system, the supported division area always lies
in the fourth quadrant-of a Cartesian coordinate system.
At this time, the translation of map coordinates to
virtual coordinates 1is the responsibility of the user.
While making the map~-reading process somewhat more
difficult, the use of virtual coordinates allows for the
task algorithm to be developed independently of a
particular cartographic system. Also, quite a bit of
insight into the decision process can be gained by using
"development"” terrain (terrain data invented by the
designer simply to exercise the system); in this case, the

use of other coordinates introduces needless complication.

The values of the friendly locations are
unrestricted, but certain values may result in constraints
that are impossible to satisfy. Typical values for the
siblings' locations are from 8-15 km from the division
boundaries, with greater values resulting 1in stronger
constraints that are more difficult to meet. The C/V
battalion headquarters is usually located near the center
of the division area, While the Hawk batallion

headquarters 1is colocated with the C/V headquarters if

B . NI
T et e .'n‘\‘.'.'.".'- C et e
PO WIS K VLR WS W Wi VI VP Sl W S

ST s s
TR N e
L I, S .Y




possible, the C/V location does not contribute any

additional constraint to the algorithm,

Table C-1 summarizes the components of the scenario

definition.
Table C-?. Scenario Definition Components
! Minimum | Maximum | Solution difficulty

Component i allowed | allowed | increases with:
;:;;::=:;=:;:::===T====§====?==:=;====?=========;;;========
;rojection (km) |} 5 H 12 | increasing values )
;djacency (%) i 70 i 130 | decreasing values
;idth (km) i 30 | 60 | increasing values
left adjacent g H | decreasing x,
Hawk battery H N/A 1 N/A | decreasing y
;ight ad jacent i i | increasing x,
Hawk battery i N/A N/A | decreasing y
E/V headquarters | N/A H N/A i N/A

C.3.3. Map Reading

The user 1is responsible for the following map reading
functions:

1. Determining how many usable and unusable
hills are in a specified region.

2. Determining hill parameters, to include
height, location, and the location of the
nearest road.

3. Determining the minimum and maximum
elevations in a given region.




LI AN L S0 . R A At it it it i T/ ek TN TN ORI CA A T R LR MM A

~

-

.

N Definitions.,

S

r -’

(‘ Hill: for our purposes, a hill is a local maximum
- in the division area elevations. A hill is
3 usable if
s (a) the local gradient does not exceed
-~ 15 degrees,

(b) it is in "relatively open" terrain

A (we interpreted this as ruling out
- cities and dense forest), and

o (c) it contains sufficient room on its
-, forward slope to house a firing

e platoon (400 by 400 meters).

- Elevation: the value of the elevation of the local
- maximum entered as an integral number of
;iﬁ meters.

Hill location: the virtual coordinate pair defining
. the location of the local maximum., Locations
.- should be entered to the nearest tenth of a

N maximum. A road is accessible if it does
" not require crossing an unbridged river or
&N "impassable™ symbol on the map.

[ kilometer.

N 3

N N Location of nearest road: the location of the
~ nearest road "accessible" from the local

:} Minimum elevation: the value of the smallest
-5 elevation contour.

Maximum elevation: the value of the largest

elevation contour.

- C.4. DIRECTORY STRUCTURE
f{
o Figure C-1 shows the UNIX file directory structure of the
A:
. complete simulator system.,
S: ‘e




Source Results Terrain

Figure C-1., UNIX Directory Structure.

The Sample directory contains the object files and
support files necessary for simulator operation. The
Source directory contains the ROSS source code for the
various actors, while the Results directory contains
several complete scripts of example SAMPLE sessions. The
Results directory of the AFIT simulator will also contain

a "history"™ file that documents system changes.

As a prospective user will soon find, the map reading
phase of the simulation can become quite tedious,
especially if real terrain maps are being used. For this
reason, the Terrain directory contains files of
"pseudomaps®=--lists of hill parameters obtained from an
actual 1:50,000 scale map of the East/West German border,
The map used covered about 22 by 20 kilometers. Also
contained in the Terrain directory are source files
containing "helper"” functions for organizing the

! pseudomaps into a form that the user can more readily use

;i during a simulator session.




*r
‘

. 4,
.

ISP P
o s oA R

APPENDIX D

PLANNING TASK SIMULATOR

DESIGNER'S GUIDE

D.l1. INTRODUCTION

The purpose of
simulator designers in

simulators similar

appendix
development of planning task

Prospective designers

should be familiar with the ROSS language in general and

our thesis goals and assumptions in particular;

knowledge

essential

of the Lisp programming

language

comprehensive understanding of the system actor and SAMPLE

actor code. We therefore suggest that the designer have

the ROSS and Lisp manuals available;

(Simulating Warfare in

a copy of the SWIRL
ROSS Language) manual would

simulator

also be helpful. SWIRL

developed at RAND, and

simulator development

programming techniques.

it provides specific guidance on

illustrating ROSS

IR AT AT A A AN




&
2
s D.2. DESIGN CONVENTIONS
; & Much of the basic information in this section is
;f drawn from the ROSS and SWIRL manuals; our suggestions are
;} based on our experiences with ROSS and our goal of
& providing a transparent and flexible example system. Areas
= covered include reserved symbols, and hints on creating
ﬂ transparent code.
; D.2.1. ROSS Reserved Symbols.
.
The only reserved keywords in ROSS are "ask", "tell"
(which are equivalent), and "myself."ROSS is embedded in
Lisp, and ROSS commands can be freely intermixed with Lisp
G function calls. ROSS commands always begin with either
E ask or tell. "Myself" is a symbol whose value is the
% actor which is currently executing a behavior.
E The characters ! & > + ~ are defined as read
S character macros in the ROSS read syntax table. ROSS is a
non-evaluating language, in contrast to the host language
i: (Franz Lisp). The character "!" signals that the
SE following s-expression (atom or list) be evaluated and the
,: returned value substituted into the command. The
g character "&" evaluates the following s-expression and
E "splices" the returned value into the command (that is,
;i N enclosing parentheses are removed).
\E: Tf;_:ff
> D - 2

..........................

. W, e LNt LN

SR B N SN ML G \.i
e e T e N N T e e N e,




e T TR TR T TR R R IR S SR Aot R e et e AL A A RRA B S ERARCAS AR P ORI
Jﬁ
ﬁi The characters ">" and "+" are pattern-matching
> T symbols. ">" will match any non-nil s-expression, while
jéﬁ "+" will match any non-nil sequence of s-expressions,
’Ea Also, if an atom immediately follows one of these symbols,
: the value of the atom is set to the matched symbol(s). For
iﬁ example, the atom "Clyde" would match the pattern variable
zzg ">person"; furthermore, the value of the symbol "person"

would be set to "Clyde."

ey

4

’;} The character """ serves as the abbreviate macro; the
L
- abbreviation package will be covered in the next section.
-
.:::
(S Q D.2.2. Code Transparency
Several features of the ROSS language contribute to
'J the transparency of the developed code. First, Franz Lisp
;g‘ supports symbol names of arbitrary 1length. This means
fae
S that names can be chosen that are meaningful to the
o~ potential user.
é&i The hyphen character is allowed as part of symbol
- "'
-.h -‘ . ° .
TN names, allowing the concatenation of terms into
A descriptive labels. For example, there is no need to use
o, .
(N
%ﬁ. the name "hemd" when "hawk-commander” will improve
-
e
NS readability.
3 A"
Tl
L -y
;'Ei R
:::j' D -3
\f

g

-

»
-
N

-

e e
- - - ~ - )
A DLOKIR




ORI A P A S IO SO I A B Y A AT A S A A PR A AL AL eIt Dt T i R Sttt Bt e st o = Jie gl

......

»

wann
b

:?3 Second, the pattern matching abilities of ROSS
%ﬁ; el extends this «capability to using messages that read much
{\w d like English. For example, messages such as "choose
;EE forward locations using terrain-free rules" can be used,
éa even though the only significant words are '"choose",
N "forward", and "terrain-free" which form the template that
'ﬁf the message must match. The use of the abbreviation
:i: package further increases the code transparency. This
:. package allows the designer to define abbreviations for
{é{ awkward phrases and constructs. Without abbreviations,
#;5 the only way for a leading actor to access its personal
:fi memory would be with a message of the form: (ask ! (ask
i; imyself recall your memory) fetch <something>). By
;E’ defining the proper abbreviation, the message becomes
. ‘E: (T"fetch <something>); obviously, the second form is much
:ES more desirable and readable.

ﬂ}_ Third, Lisp code can be made more readable by the use
523 of the "“if" and "loop" macro packages (supplied with the
Si§ ROSS tape). These packages replace raw Lisp functions
x;: such as cond, do, and prog statements. For example,

3

Ry (cond ((eq test t) (do whatever))

jﬁ. (t (do the other thing)))

fff can be replaced by

i} (if (eq test t)

AN then (do whatever)

v else (do the other thing))

= D - 4

2

6

{??

-"’c"p"‘ ."A-"- v ﬁ-.'-'- 0



Similar gains in readability may be obtained by using

7.

L.

< - the loop macro package.

t

' Beyond these macro packages, it is possible to
. increase the friendliness of Lisp code. For example, the

code fragment

::.

P (if (setqg result (cadddr lis))

}a then (use result)

By else (return))

': may be somewhat obscure at first. Clearer is

s

o (setq result (nthelem 4 lis))

N (if (not (null result))

- then (use result)

5 else (return nil))

The second version does not require the user to

” cib figure out that "cadddr” references the fourth element of
a a list, or to remember that a "return" with no argument
E returns a value of nil, Also, the second version
- explicitly states that any non-nil value of "result" is
“a
_f sufficient to trigger the "then" clause, and separates
.

L; computation of "result" from its use in the test clause of
. the "if" statement.

)

-~

.

-

)

2

3 ‘o
N

&, B

.\.

D -5

-
.\l

TN AT L NN LT AN L T T S e e N T N
A e e e T T T T T .'. T ‘_'\‘\




APPENDIX E
USING TERRAIN IN A

PLANNING SIMULATOR

All battlefield commanders must deal with a common
major constraint on their glans: battlefield solutions
must be shaped by the terrain. The commander forms his
assessments with a map, supplemented with intelligence and

reconnaissance data, and sometimes an on-site survey.

A map that is useful for a broad range of commanders
(tank, SAM, infantry, etc) requires representation of a
variety of data:

1. Height. Height of the land (relative to some
benchmark) with sufficient resolution for the
commander to discern dangerously sloped or impassable
areas.

2. Roads.

3. Waterways.

4. Populated areas.

5. Ground cover, Rubble, sand, swamp, snow (seasonal),
etc.

6. Foilage. Brush, forest, etc.

1.1 .t et ata’a



ij; The digital analogue to the commander's map must
?if ';j represent the same generally useful data as the physical
e map. This general military map representation (GMMR)
3;: should contain:

Ol ) Height., Height of the land with sufficient resolution
N for an automated map-reader to discern dangerously
. sloped or impassable areas. One representation might
L be: the mean altitude over 100 meter square areas
o (tiles). .
-i? 2. Roads. Roads can be represented as a series of

- points, a set of vectors or line segments, or simply
by marking each tile as passable or impassable. The

{E. latter representation however, is only valid in terms
Lz: of the question "Impassable by whom?", so it is not
;; general,

e 3. Waterways. Same as roads.

e 4., Populated areas.

. 5. Ground cover. Rubble, sand, swamp, snow (seasonal),

o etc.

6. Foilage. Brush, forest, etc.

R ‘E: The GMMR provides the repository for the information

.g{ N needed by any battlefield commander, real or modelled.

: However, to be wuseful 1in planning a task, it must be
, viewed in term of the question "What features apply to the

Nt task at hand?" The task determines the necessary features

L that must be abstracted from the GMMR. Each commander

‘ utilizes a handful of abstractions plus some detailed

knowledge provided by reconnaisance and his on-site survey

ﬁf to reason about the terrain.

\ ™

ﬁﬁ Many battlefield planning situations are concerned
=

L with the dominance of the terrain. Dominant terrain is

Lr.

conveniently described as "big hills": areas of land that

R .

e LI R R Y
w5 et overlook the surrounding region. From the vantage point
ro?

(2"

N

.'_. E - 2

J‘:’./

(]

e

N A P S o 2 o T S L S TP

&,

.......



RO RRC S RS, S

N

RS I

4., ‘l' .l., .l.

. a
5"0 .l ‘I ‘A

.o .
(]
oL

AR/t AN S Tagthe Sl Al e S S-S S0 S S Sl STl - i sy

of dominant terrain, the commander and his resources (such
as radar) have the capability of "seeing” the approach of
the enemy at a distance. The dominance provides the
commander with a view over other terrain that would mask
his view if he had a lower vantage point. To some degree,
he can also view areas behind low-lying hills and in

valleys.

We have found, through examination of the terrain in
Central Europe, that the breadth of a dominant feature is
roughly one kilometer. This implies a useful
representation of describing terrain using blocks with
sides if one kilometer. A block will contain one of four
types of terrain:

Flat.
Low, rolling hills.

A dominant mass with multiple peaks.
A single dominant hill.

WA

The GMMR we have developed consists of one kilometer
square blocks, with each block containing 100 tiles. As
described above, a tile is 100 meters on a side. A map of
this nature, stored in a data-base, would provide.an
automated map-reader with the resolution necessary to
determine and classify the terrain features. The
resolution of the tiles allows the map-reader to determine
the gradients of the land. The resolution of the blocks

provides the simulated commander with an abstraction of

the terrain in terms of dominance.

cvev . v .Ww,




Lt e VL N e s g e e RTINS T ‘-'.‘I‘

' The abstraction can be used to describe

E‘ ‘- two-dimensionally the areas visible from the site and

'i those areas masked by other terrain. The third dimension,

S elevation with respect to the site, is represented by the

-

- following heuristics:

s

‘Q‘ 1. Masking decreases as the elevation angle increases,

I for the simple reason that gross terrain features get

S smaller at the top. The inverse is also true,

masking increases with decreasing elevation angles.

Z: 2, Look-down capability is enhanced with larger

o (negative) elevation angles. This is the ability to

- see behind features due to the viewer's higher

. vantage point.

;5 Populated areas, ground cover, and foilage can be

~

ﬁ represented at the same or lower resolution than height

. @ information, due to the dynamics of encroachment. The

ﬁ; edges of the region are fluid, and boundary conditions

S

j; around the region are not much different than conditions
within, in terms of mobility of the commander's assets. A

.- low resolution representation will suffice., Additionally,

;J the commander does not make detailed judgements of cover
(for camouflage and shielding) from his map. Rather, he

fj notes the fact that the areas of cover exist, and makes

-.;.

N the specific decisions opportunistically during the

. occupation or the battle.

'S

s

o

I

2 E - 4




SN VITAS

T

RS

a9 Gregg Harold Gunsch was born to Harold and Delores
'\"'

NG Gunsch on 30 May 1958 in Eureka, South Dakota. He
*i graduated from high school in Bismarck, North Dakota in
- 1976. He then attended Bismarck Junior College for one
*l

\ﬁ year and the University of North Dakota for two, where he
.

r received the degree of Bachelor of Electrical Engineering
4 in May 1979. Upon graduation, he received a commission in
O

5} the USAF through Officer's Training School. After
o technical training, he was assigned to the 394th ICBM Test
oo ) Maintenance Squadron, Vandenberg AFB, California 1in
:? support of the Minuteman Operational Test and Evaluation
.r_:

- Program. There he served as a Technical Engineering Team
2f Chief, and then 0IC, ICBM Engineering, until entering the
ﬁf School of Engineering, Air Force Institute of Technology,
- in June 1982,

L Permanent address: 1722 North 21lst St.

)

:f Bismarck, North Dakota 58501

N

X

a7

:'::: "‘::'v

o

%




- . ) o it g S J ML et et i 1‘;’ e 2
Padire AAUIMACRERAISC AL ALY S I ety A A N A AL R S R AR SRR AT AR TR T R R A T ‘l

RN
‘f G:j Bob Victor Hebert was born to Iris and Robert Hebert
on 12 January 1957 in Houma, Louisiana. He graduated from
high school in 1973 and attended Nicholls State University
for three years. He enlisted in the USAF in January 1977
- and completed technical training at Keesler AFB,
E; Mississippi. He served as an avionics communications
- specialist in the 1lst Special Operations Wing, Hurlburt
Eﬁ Field, Florida until September 1980. He attended Geor3jia
E; Institute of Technology under the Airman's Education and
i; Commissioning Program and received the degree of Bachelor
i: of Electrical Engineering in September 1980. Upon
Sﬁ graduation, he received a commission in the USAF through
;: ‘ii Officer's Training School. He then served as a command
a and control analyst in the Foreign Technology Division,
.E Wright-Patterson AFB, Ohio until entering the School of
;’ Engineering, Air Force 1Institute of Technology, in June
) 1982,
2
- Permanent address: PO Box 456
%{ Napoleonville, Louisiana 70390
3

]
b .




REPORT DOCUMENTATION PAGE

13. REPORAT SECUR

I ‘0:11"%‘-

ASSIFICATION

Y CL
-v.—r~r
O A

1b. RESTRICTIVE MARKINGS

TerSECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPORT

FEeroued ror sualiilo e leczes
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE disteritutior Wrlimeted-
4. PEAFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
AF T GE<EE-220-29 )
6. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL |7a. NAME OF MONITORING ORGANIZATION
(If applicable)
A Zokool of Endineesrind BFITENG
6c. ADDRESS (City, State and ZIP Code) . 7b. ADORESS (City, State and ZIP Code)
Gir Forece Inztitute of Technolodw
:.-vl"'.i.E'Fot"F'-:l.t't-‘-‘jr"':-t.lﬂ “FE. Ohioc 454
8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL |9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
Fareidn Tecnrnolodg Diw FTO-TOCS
8c. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.
' o ) PROGRAM PROJECT TASK WORK UN'
Wrirght-Patterszon AaFE. ORic 459 ELEMENT NO. NO. NO. NO.
11. TITLE (Include Security Classification)
See Box 19
12. PERSONAL AUTHOR(S)
Geedd H. SGunsch. BS., Captalin. UIAF Bob t. Hepert, Z.5.. 1Lt LISHF
ﬁr‘vre OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15, PAGE COUN
M Thesis FROM TO 1923 December =

16. SUPPLEMENTARY NOTATION

ic relecza: 1AW AFR 18019,
%‘” WOLAVE'! Vel ¥ l~/

Deun for Reseoich and Professional Development

17. COSAT!I CODES
FIELD GROUP Sus. GA. EXFERT ESWZ
i3 G& ARTIFICIAL

18. SUBJECT TERMS (Continue on reverse if nea mmm&“lo'ﬁwm

=Rty
miizs

TeMs MILITHREY
IMTELLIGENCE

FLAMMIMG
SIMULRTGRS



2} 17 ocontinued:

Portions of the itmulator iowse D2er ImMFL2me
of tme feazipilite of this areroach, a3 well as
develorers. The lanluade used woaz ROS3. an coas
larn3uage embedded in Framz Lize o dMocbisze andg
Lorﬁorn*lnn- The imrlemerntation waz done on the
Techmolodz's Scientific Surrort Computer. a WAY
uwzed waz the Framz Lisr werszion of ROSS.

Several gwsztemn functions such asz dota ztoral
chornizms, o communications charnel model. dasi
dz uiere imrlemented o frrowvide o workbernch for

<ternded simulotor. Orme tosk sreciallist wosz alsz
smoli-zcale expart zestem that Fertormz the plon
zelectingd emrlocemant si1tazs For Hawbk medium-rorms
pizzile (SAMD) batteries.

#lthoush the imfrlamented tozsk spacialist 1=
onis an aFrsroximetion of fthe recl-warld countere
demonztrote the =aze with which task EPH!lGilEtE
The transearencw. modularitys,. and power of RBOSE,
zaztem functions. Frovides o robust environment

regl-worid prlanning

al3orithus.

=

iz
b

in

21
ith

U

X ol

Wi Lo

[t |or|"'"r J j_rx'-lﬁ

g

w4 T

-0 o W=THL

L
3w
Ly

+

4 e

m

[LI

ar lj

il







